Järnsmide i Visby och Lödöse

Arkeometallurgisk undersökning av slagger
Gotland, Visby, fornlämning 107:1
Västergötland, St Peders socken, Lödöse, fornlämning 23:1

Lena Grandin, Eva Hjärthner-Holdar och Mia Englund
Järnsmide i Visby och Lödöse

Arkeometallurgisk undersökning av slagger
Gotland, Visby, fornlämning 107:1
Västergötland, St Peders socken, Lödöse, fornlämning 23:1
Dnr 424-0149-2010

Lena Grandin, Eva Hjärthner-Holdar och Mia Englund
Undersökningen har genomförts med ekonomiskt bidrag från Kungliga Vitterhets Historie och Antikvitets akademien

Riksantikvarieämbetet
Arkeologiska uppdagsverksamheten
UV GAL

Portalgatan 2A
754 23 UPPSALA
Växel: 010-480 80 30
Fax: 010-480 80 47

e-post: uvgal@raa.se
e-post: fornamn.efternamn@raa.se
www.arkeologiuv.se

© 2012 Riksantikvarieämbetet
UV GAL Rapport 2012:12
ISSN 1654-7950
Utskrift Uppsala, 2012
Innehåll

Sammanfattning .. 7
Abstract ... 8
Inledning.. 9
 Bakgrund... 9
 Slagger som indikatorer på hantverk och proveniens 9
 Liknande undersökning.. 10
 Analyser – metoder och möjligheter............................... 10
 Järn från blästugn eller masugn? 11
 Primärsmede/färskat järn och/eller sekundärsmede! 11
 Proveniens.. 11
Undersökningens förutsättningar 12
 Visbys slagger... 12
 Malmfynd i Visby.. 15
 Lödöses slaggar... 16
Metod ... 17
 Okulär granskning.. 18
 Petrografisk undersökning .. 18
 Metallografisk undersökning 19
 Elektronmikrosonданalyser... 19
 Totalkemiska analyser ... 19
Resultat .. 20
 Visby .. 21
 Priorn 11, Fnr 2315 .. 21
 Priorn 11, Fnr 2478 .. 23
 St Clemens 4, Fnr 780530 25
 Kaplanen 8, Fnr 507 ... 25
 Kaplanen 8, Fnr 1278 ... 26
 Gråbrodern, Utan nummer 26
 Schweizergränd, Fnr 78 .. 27
 Schweizergränd, Fnr 169 ... 27
 Schweizergränd, Fnr 288 ... 28
 Schweizergränd, Fnr 304 ... 28
 Schweizergränd, Fnr 307 ... 28
 Abboten 1, Fnr 54 .. 30
 Abboten 1, Fnr 153 .. 32
 Smedjan 7, Fnr 138 ... 32
 Smedjan 7, Fnr 142 ... 32
 Smedjan 7, Fnr 259 ... 34
 Smedjan 7, Fnr 485 ... 34
 Stora Torget C5819:15, WII:12................................. 35
 Fyndback ur Nihlén samling märkt "22 st järnklumpa" ... 38
 Fyndback ur Fardelins samling märkt "12 st järnklumpar" 38
Sammanfattning

Undersökningen och analyserna har visat en del förväntade resultat men även en del oväntade observationer har gjorts som har lett till nya tolkningar om detaljer i järnhantverkets processer.

Ett urval för analys gjordes med utgångspunkt i tidigare publikationer och dokumentationsmaterial kring slagger i de båda städerna. Bland uppgifterna fanns indikationer om att såväl järnframställning som smide ägt rum i Lödöse. Dessutom har det spekulerats i att bergmalm från Utö gruvor i Södermanland, som påträffades som enstaka klumpar bland slagger i Visby vid undersökningar på 1920-talet, använts för att tillverka järnet som smiddes i Visby.

Bland resultaten kan vi lyfta fram följande:

- Slaggerna representerar huvudsakligen primärsmide, där luppar har rensats på slagg
- Järnet är ursprungligen blästjärn, från sjö-/myrmalm, mindre troligt från bergmalm
- Lupparna som smiddes kan ha varit stora och smideshärden konstruerad för slaggtappning
- Den järnframställning som omnäms i handlingar, främst i Lödöse, finns det ej belägg för i slaggmaterialet
- Det finns inga belägg för att malm från Utö har använts för järnframställningen som ligger till grund för smidet i Visby
- Järnet har kommit till de båda städerna från flera leverantörer

Sedan tidigare är det känt att järnproduktionen i Sverige under vikingatid och medeltid var tämligen stor med en troligen gynnsam konjunktur men att olika områden har olika höjdpunkter i sin produktion. En slutsats som man kan dra från den nu genomförda studien förefaller ge stöd för detta och att man köpte järn där tillgång fanns och att järnhandeln var tämligen välutvecklad. Detta medför också att det dessutom fanns ett, för sin tid, välutvecklat distributionsnät för järn och att man inte enbart införskaffade järn från de mest närliggande produktionsområdena.
Abstract

Iron has played a crucial role for the formation of the Swedish Medieval state. In his research, Hans Andersson has also discussed iron as a driving force for the early urbanisation (2010, 2011). On his commission, GAL has now made archaeometallurgic analyses on slags from the two Medieval towns Visby and Lōdöse to study some fundamental issues regarding smithing and forging, as what type of iron that was worked in the towns – blooms or bars – and whether it is possible distinguish iron production areas that delivered the metallic iron.

The study partly presents expected results as that the majority of the material comprises typical plano-convex slags in both towns, but also more unexpected observations allowing for new interpretations regarding details in the iron working processes.

The selection of slag samples for analyses were based on previous publications and various documentation and their information that indicated that iron smelting as well as smithing took part in Lōdöse. Furthermore, discussion have been vivid regarding a few lumps of magnetite ore that was provenanced to Utö mines south of Stockholm and that these were used in the iron production for the iron forged in Visby.

A few brief results from this study are:

- The majority of the slags from both Visby and Lōdöse represent primary smithing of iron blooms
- The iron is most probably produced in bloomery furnaces run on limonitic ores, less likely rock ores.
- The blooms that were cleansed might have been large and the hearths might accordingly have been constructed for tapping of slag (Visby)
- The iron production that is indirectly indicated in documentation from Lōdöse can not be verified by the characteristic’s of the slags that all are smithing slags
- There are no evidence that the suggested magnetite ore from the Utō mine was smelted and used for further smithing in Visby
- Several iron production areas seem to have accounted for the iron supply to Visby as well as to Lōdöse

As already previously known, iron production was extensive during the Viking and Medieval times in Sweden, but fluctuated from region to region. The results from this study give further support to this and that iron was acquired where it was available. The iron trade seems to have been well established in distribution networks making it possible to buy iron not only from the spatially nearest production areas.
Inledning

Bakgrund

För att få mer kunskap kring smidet i Visby och Lödöse och deras järndistribution har därför arkeometallurgiska analyser av ett urval av slagger från de båda städerna utförts.

Undersökningen har genomförts med ekonomiskt bidrag från Kungliga Vitterhets Historie och Antikvitets akademien.

Vi vill rikta ett stort tack till Gotlands museum i Visby och Lödöse Museum för all hjälp och vänligt bemötande samt för tillstånd att få provta slagger för analys.

Slagger som indikerar på hantverk och proveniens

Slagger från såväl järnframställning som smide är viktiga indikatorer för det hantverk de representera. Deras yttre former såväl som uppbyggnad i mikroskala och kemisk sammansättning kan ge information om använd råvara och dess ursprung, typ av metallhantverk samt produktens beskaffenhet.

Typ av smide kan ses ur flera perspektiv. Vanligen skiljer man primärsmede från sekundärsmide. Vid primärsmedet utgår smeden från en mer slaggrik råvara som behöver rensas och kompakteras innan den smids vidare. Sekundärsmedet, också kallat föremålsmedet, utgår från en
renare råvara t.ex. från en slaggrensad och kompakterad lupp och/eller olika typer av ämnesjärn vilka har varit i fokus i många andra sammanhang. Att skilja mellan dessa båda smidestyper innebär därför inte bara en direkt bestämning av processtyp utan indirekt ger det besked om i vilken form som järnet köpts in eller funnits tillgängligt. Behovet av primärsme indikerar samtidigt att det är ett blästjärn och inte ett masugnsjärn som varit utgångspunkten. Att konstatera tillverkningsprocess är således viktigt i en brytningstid mellan två olika järnframställningstekniker.

Slaggernas uppbyggnad och deras kemiska sammansättning är grundläggande faktorer för att kunna urskilja de områden som järnet tillverkats i, dvs. varifrån malmen kommer. Frågan kring att hitta mettlers ursprung, med hjälp av olika naturvetenskapliga analyser, har ofta diskuterats inte minst inom järnforskningen. För tillfället är den mer aktuell än någonsin i takt med att analys- och utväderingsmetoder kontinuerligt förfinas. Flera projekt har initierats inom Skandinavien och Geoarkeologiskt Laboratorium samarbetar med Kulturhistorisk Museum i Oslo kring att besvara frågor om det norska järnets proveniens under yngre järnålder och medeltid (Grandin 2009a, Grandin m.fl. 2010, Bill m.fl. 2011). För tillfället planeras det också för ett sameuropeiskt projekt i proveniensfrågor där metodutveckling står i fokus. Här finns det följaktligen en stor möjlighet att med hjälp av slaggmaterialet från Visby och Lödöse, samt de presumtiva proveniensområdena, kunna vara en del av denna utveckling. Även om man inte med säkerhet kan säga varifrån malmen kommit så kan man med större säkerhet fastställa varifrån den inte kan ha kommit.

Det är väsentligt för den fortsatta diskussionen att bestämma karaktären på smidet i dessa två städer. Om det går att föra diskussionen om proveniens vidare skulle vi få ett betydelsefullt redskap för att vidareutveckla frågor kring hur järnproduktionen och järndistributionen var organiserad och därmed kunna stärka studierna om järnets roll för den medeltida urbaniseringen.

Liknande undersökning

Analyser – metoder och möjligheter

För att kunna belysa ovanstående problemställningar har en arkeometallurgisk pilotstudie nu utförts för att besvara några grundläggande frågor kring smidet i Visby och Lödöse. I dessa ingår
morfologisk granskning av slagger för att få en första inblick i deras uppbyggnad. Ett mindre urval har undersökts i mikroskop för att få en detaljerad information om uppbyggnad och använda tekniker. Dessa slagger har också analyserats med avseende på kemisk sammansättning där resultaten ligger till grund för att söka efter råvarans proveniens.

Järn från blästugn eller masugn?

Primärsmide/färskat järn och/eller sekundärsmide!

Järn som tillverkas i blästugn innehåller ofta slagg som behöver rensas bort innan föremålssmidet kan påbörjas. Detta görs i det så kallade primärsmidet under det att masugnsjärnet oftast färskas vid hyttplatsen för att bli smidbart, vilket gör att primärsmiddesslaggerna saknas. Förekomst av slagger från primärsmidesprocessen bidrar följaktligen även med kunskap kring framställningsteknik. Det är dock inte alltid helt lätt att särskilja primärsmiddesslaggerna från sekundärsmiddesslaggerna vilket slaggarna i Visby och Lödöse gjorde oss klart uppmärksamma på.

Slagger från sekundärsmide, dvs. föremålssmide, är dock oftast mer komplext uppbyggda. I deras uppbyggnad är det också möjligt att spåra smidestekniker som användning av vällsand, vilket antyder att smeden har vällt samman järn av olika kvaliteter, t.ex. ett mjukare järn med det hårdare stålet. Slaggernas yttre former och innehåll av annat material kan också återspeglar smideshärden uppbyggnad. Metalldroppar från andra metaller kan också vara en indikation på att man vid sekunderärmidesmetan använt sig av sådana för bland annat inläggningar.

Proveniens

förutom det eftertraktade järnet, speglar den geologiska omgivning som de har bildats i och följaktligen finns det regionala skillnader som beror på berg- och jordarternas sammansättning. Under malmens väg från råvara till föremål följer dessa ämnen med i processerna och fördelar sig mellan slagg och mettal och genom att hitta ämnen som är signifikanter i vissa områden finns det möjligheter att hitta proveniensten.

Det är också betydelsefullt för analyserna att kunna välja slagger från främst primärsmedet då där finns mindre av sekundära inblandningar och dessa följaktligen mest liknar reduktionsslagger utifrån ett kemiskt perspektiv. När man väljer slagger från sekundärsmedet måste man välja sådana som inte har för omfattande inblandning av annat material, t.ex. via tillsatser som inte härstammar från malmens sammansättning.

I detta sammanhang är det av stor vikt att det finns analyser även av slagger från järnframställningen i de presumtiva tillverkningsområdena att jämföra med.

Mängden och kvalitén på tillgängliga data varierar dock kraftigt från område till område. En del äldre analysdata innehåller dessutom oftast endast ett fåtal huvudämnen, t.ex. järn, kisel och kalcium, men det är vanligen ämnen som förekommer i betydligt lägre halter, s.k. spårämnen som är mest specifika för olika regioner. Optimalt bör även slaggerna från förmodade produktionsområden vara samtida med smidet för en jämförelse. Visserligen kan samma malmtyper ha använts även i framställing under äldre järnåldersen som senare inom en region men utvinningsprocessen och hur olika ämnen fördelar sig mellan slagg och mettal kan skilja sig åt.

Undersökningens förutsättningar

Visbys slagger

Bland slagglag i Tekniska museets samlingar finns ett fåtal från Gotland. Några av dem är reduktionsslagger av betydligt äldre datum (järnålder?) än slagglagen från Visby.

Förfrågningar har också gjorts till Sveriges Geologiska Undersökning (SGU) eftersom statsgeolog H. Hedström omnämns av Nihlén (1927) som en av dem som karaktäriserat främst malmklumpar, men även annat material från undersökningen. Hos SGU finns en del dokumentation om Hedström och hans arbete på Gotland, men inget material. Inte heller Naturhistoriska Riksmuseet (NRM) har vare sig material från denna Nihlén’s undersökning eller uppgifter om var det kan finnas eller ha funnits. Undersökningen i sig är dock känd även hos NRM, bland annat eftersom N. Zénzen vid NRM också granskade malmklumparna från Visby.

Det finns anteckningar i Tekniska museet om att slagglag från Visby skall ha funnits i magasinen men om detta kan ha varit Smedjegatsslagglagen eller ej går inte att utröna då inga slagglag eller närmare beskrivningar av plats och fynd finns i arkiven på Tekniska Museet.

koppar/kopparlegeringshantverk under det att ut mot och i Smedjegatan tog järnslaggen helt överhanden. Inga medeltida lager fanns kvar i kvartersmarken men i botten på schaktet fanns, vad som beskrivs som ett ugnsfundament med okänd funktion vilket dateras till 1200-tal (Nydolf 2005:30 a.a.).

Ett urval har gjorts för mer detaljerade genomgångar och efterföljande analyser. Eftersom inga slagger stod att finna från Smedjegatan i Visby, som vi inledningsvis hade prioriterat, har urvalet av slagger kommit att koncentreras till intilliggande kvartersmark vid Smedjegatan. En hel del av dessa material har framkommit under senare tids undersökningar.

I Tekniska Museet fanns några reduktionsslager. På Gotland finns järnframställning från förromersk järnålder och framåt men inte i stora

Malmfynd i Visby

vad gäller flera ämnen, men att det låga innehållet av magnesium i slaggerna från Visby talar mot ett släktspak med Utö-malmen.

Malmfunden och diskussionen om reduktion av malm i Visby (eller dess närhet) är intressant ur flera aspekter. Dels är naturligtvis proveniensfrågan av betydelse, dels frågan om vilka processled som har genomförts. Om man ska försöka knyta Utö-malmen till slaggerna i lagren i Smedjegatan och andra kvarter måste man komma ihåg att det är främst smidesslagger som har observerats. Det innebär att vi saknar ett processled (Se bakgrundstexten ovan), dvs. reduktion av malm. Som vi nämnt ovan har bergmalmer dessutom huvudsakligen smältts i masugnar och inte blästugnar, även om undantag finns, varför det är en helt annan framställningsprocess som avses. Även Nihlén berör denna tanke, men något försiktigt (1927).

Lödöses slagger

Det är främst i de norra stadsdelarna som järnhantering har registrerats. En expansion av stadsområdet, norr om åarmen, anses ha skett på 1200-talet, kanske i samband med att klostret etablerar sig, efter 1243. Men med tanke på en del tidiga dateringar i materialet verkar det som om man haft viss verksamhet/bostäder redan under 1100-talet.

Järnhantering finns främst i de norra stadsdelarna, i det som benämns M, även om inslag av annan metallhantering förekommer. Områden som domineras av koppar- och kopparlegeringshanteringen är belägna i öster. Slagg verkar tyvärr inte ha samlats in systematiskt förrän under 1970-talets början.

I inga analyser, i modern tid, förefaller ha genomförts av slagger från Lödöse men Buchwald har analyserat slaggneslutningar i tre nitar, från 1300-talet. Han föreslår att dessa, utifrån sina kemiska sammansättningar, där två av dem har höga manganhalter, kan ha tillverkats av myrmalmer i Västergötland eller Halland (2008:54).

Metod

Varje utvald slagg har därefter delats och ett utsnitt har slipats och polerats för undersökningar i mikroskop. Slaggerna analyserades även med totalkemiska analysmetoder där alltifrån 12 kontexter i Visby och 6 kontexter i Lödöse valts ut. Utifrån dessa kontexter har sedan
järn och kisel till ämnen i spårhalter som kobolt och nickel kvantifierades.

För ett fåtal slaggar har kompletterande kemiska analyser genomförts med elektronmikroskond för att bestämma sammansättning på inneslutna kopparlegeringar.

I några slaggar noterades koncentrationer av metalliskt järn. Dessa undersöks metallografiskt för att bestämma järnets sammansättning och uppbyggnad, som ett led i analysen att urskilja processled och hur järnet bearbetats.

Analysdata presenteras också med hjälp av olika diagram där det inledningsvis kan konstateras om slaggarna från respektive stad uppvisar likartade drag eller om skillnader finns. I nästa tolkningssteg relateras analysvärdena till tillgängliga referensdata för att se om någon korrelation föreligger till något eller några av de hypotetiska områdena.

Okulär granskning
Okulär granskning görs av samtliga fyndposter som valts ut för att karaktärisera dem så noggrant och detaljerat som möjligt. Är det enbart smide som har ägt rum på platsen eller finns det tecken på andra processer och i så fall vilka? Vilket eller vilka led i smiden är det, är det primärmide från lupparslaggrika ämnesjärn eller sekundärmide från slaggfria ämnesjärn? Slaggarnas uppbyggnad ger indikationer om detta och också om hur smideshärden kan ha varit utformad.

Petrografisk undersökning
Av 19 slaggar tillverkades tunnslip (av MINOPREP, Hunnebostrand) av så stora ytor som möjligt av deras tvärsnitt för att kunna få en detaljerad bild av det processled de representerar och hur processen fungerat. Petrografiska undersökningar utfördes genomfallande och påfallande (planpolariserad) ljus för att identifiera materialets olika komponenter och texturella drag. Undersökningen gjordes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digitalkamera.

Slaggar består huvudsakligen av olivin, wüstit och glas. Vanliga inslag är också hercynit, magnetit, leucit, limonit och metalliskt järn. Olivin är ett silikatmineral med den allmänna formeln A_2SiO_4, där A oftast är järn (fayalitisk sammansättning) men mangan, magnesium och kalcium kan förekomma i mindre mängder. Wüstit, FeO, är också ett mycket vanligt inslag i slaggar från blästbruken. Om höga koncentrationer av wüstit förekommer är slaggarnas totala järnhalt vanligtvis också hög. Glas utgör slaggarnas ”restsmälta” och kan därför variera kraftigt i sammansättning beroende på vilka mineral som tidigare kristalliserat, slaggarnas total-sammansättning och avkylningsförlopp. Magnetit, Fe$_3$O$_4$, kan förekomma i stället för wüstit om temperatur och/eller syretryck är högre. Ett mineral som kan förekomma i slaggar med relativt höga aluminiumhalter är hercynit, FeAl$_2$O$_4$. Höga aluminiumhalter i kombination med höga kaliumhalter återfinns i leucit, KAlSi$_2$O$_6$, som i vissa slaggar kan förekomma i stället för den vanligare glasfasen. Droppar av metalliskt järn, några mikrometer stora, är också vanligt inslag i slaggar från
reduktionsprocessen. Limonit, järnhydroxider med varierande sammansättning, är huvudkomponent i sjö- och myrmalm och kan uppträda i slagger som oreducerade rester men vanligtvis förekommer limonit som en sekundär bildning, dvs. i form av rost.

Metallografisk undersökning
Metallografiska undersökningar utfördes på fyra polerade prover av metalliskt järn i påfallande ljus för att bedöma järnkvaliteten. I mikroskopet kan olika texturer, beroende på kemisk sammansättning och grad av bearbetning utläsas. Proverna etsades med 2 % nitallösning. Metoden är användbar för att bedöma kolhalten i materialet, t.ex. om det är ett mjukt järn eller kolstål. Metoden kan också avslöja ett fosforinnehåll, vilket påverkar materialets hårdhets- och seghetsegenskaper. Även mängden och typen av slaggineslutningar kan studeras för att ytterligare kunna bedöma kvalitet och möjliga användningsområden. Några termer som används i detaljbeskrivningarna i resultatkapitlet är ferrit som är mjukt järn utan kolinnehåll, cementit som är en förening av järn och kol (Fe₃C), och perlit som är en struktur uppbyggd av omväxlande ferrit och cementit. Generellt medför alltså en större mängd perlit en högre kolhalt och ett hårdare material. Ännu högre kolhalt fås i gjutjärn, med mer än 2 % kol. Också i gjutjärnet kan en del detaljer ses, t.ex. grafitlameller som är tunna skivor av kol. En speciell struktur som kan bildas vid avsvalning i vitt gjutjärn är ledeburit som består av en blandning av cementit och perlit.

Undersökningen genomfördes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digtalkamera.

Elektronmikrosondanalysen
Mikrosondanalysen har gjorts på fyra förekomster av kopparlegering i slagger för att bestämma legeringens sammansättning. Samtidigt analyserades även metallkoncentrationer som domineras av järn. Analyserna gjordes på de polerade tunnslip som först undersöks petrografiskt. Analysen genomfördes med elektronmikrosond JEOL JXA-8530F vid CEMPEG (Centre for Experimental Mineralogy Petrology & Geochemistry) vid Institutionen för Geovetenskaper, Uppsala Universitet. En analysrutin speciellt optimerad för kopparlegeringar tillämpades.

Metoden innebär att en elektronstråle fokuseras på önskad punkt på provet. De ingående elementen kan därmed detekteras och deras halt mätas. På detta sätt får man kvantitativa data av sammansättningen på de olika element som ingår i materialet.

Totalkemiska analyser
Totalkemisk analys utfördes på 18 slaggprov hos ALS Scandinavia, Luleå. Använd analysmetod är ICP-AES för huvudelement och ICP-QMS för spårelement. Totalt analyserades 43 element i varje prov (tabell 5). Slaggproven har också studerats i mikroskop (petrografisk undersökning). I standardanalysen för slagger från järnhantverk ingår inte

Resultat

De slagger som har ingått i studien finns sammanställda i tabellform för respektive stad där det också framgår vilka som har analyserats mer detaljerat och med vilken typ av analys. Resultaten av analyserna för slaggerna presenteras inledningsvis detaljerat för varje slagg där deras yttre beskrivs liksom de observationer som har gjorts i mikroskop. I tabellform finns en sammanställning av dessa observationer. En samlad bedömning om slaggerna följer därefter. De kemiska analyserna följer sedan i ett eget stycke där slaggerna behandlas tillsammans.

Tabell 1. Förteckning över slagger från Visby, från Gotlands museum samt en från Stenkumla sn på Gotland, från Tekniska museet.

<table>
<thead>
<tr>
<th>Kvarter/gata</th>
<th>Benämning</th>
<th>Notering</th>
<th>Provtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorn 11</td>
<td>2315</td>
<td>T, ICP, E</td>
<td></td>
</tr>
<tr>
<td>Priorn 11</td>
<td>2478</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>St Clemens 4</td>
<td>780530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplanen 8</td>
<td>507</td>
<td>T, ICP, E</td>
<td></td>
</tr>
<tr>
<td>Kaplanen 8</td>
<td>1278</td>
<td>Del av större fyndask</td>
<td></td>
</tr>
<tr>
<td>Gråbrodern</td>
<td>Utan nr</td>
<td>Ur plastback</td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>169</td>
<td>1 st ur fyndpåse</td>
<td>P</td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>304</td>
<td>Del ur större fyndask</td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>307</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Abboten 1</td>
<td>54</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Abboten 1</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>142</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>485</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Stora Torget Visby (Nihlén) CS819</td>
<td></td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Fyndback ur Nihlén samling</td>
<td>Anonym</td>
<td>Slagg ur ask märkt ”22 st järnklumpar”</td>
<td></td>
</tr>
<tr>
<td>Fyndback ur Fardelins samling</td>
<td>”Stenålderslagret Visby”</td>
<td>Slagg ur ask märkt ”12 st järnklumpar”</td>
<td></td>
</tr>
<tr>
<td>Stenkumla sn</td>
<td>TM 16858</td>
<td>T, ICP</td>
<td></td>
</tr>
</tbody>
</table>

I kolumnen ”Provtyp” har noterats vilka som har analyserats ytterligare. T = tunnslip för prov som undersöks petrografiskt, ICP = prov som analyserats med totalkemiska analyser, P= polerprov som undersöks metallografiskt, E= prov som har analyserats med elektronmikroskop.

Visby

Priorn 11, Fnr 2315

Okulär granskning

I delat snitt (fig. 2) framträden en mestadels homogent uppbyggd slagg med mindre porer i nedre halvan, större i den övre, men utan tydlig skiktning. I botten finns små kolstycken och direkt över dessa är slaggen ljust grå men i övrigt grå. Denna slagg har valts för fortsatta analyser.

I fyndposten finns också en platt, platt och plan slagg ca 70 mm lång och 35 mm bred. Tjockleken varierar från 6–18 mm, vikt 49 g.
Undersidan av slaggen är metallglänsande grå där slaggsträngar har stelnat mot underlaget. Övertytan är jämn och slät, grå-röd och med stelningsstruktur. Den är svagt magnetisk på övertytan.

Undersökning i mikroskop

Figur 2. Priorn 11, smidesskållan Fnr 2315 i tvärsnitt.

Figur 3. Priorn 11, Fnr 2315 i mikroskop. Översikt på homogen slagg som består av olivin (ljusgrå) och en mellanliggande glasfas (mörkare grå).
Elektronmikrosondanalys
En kemisk analys i metalldroppar bekräftar att den ena typen domineras av järn, med spårhalter av koppar och kobolt. Den andra typen av droppe är huvudsakligen koppar med drygt 1 % järn.

Priorn 11, Fnr 2478
Okulär granskning
I fyndposten ingår flera små slaggstycken av liknande typ (Se även Fnr 2315 från Priorn 11). Den största slagen är 45×43×30 mm stor och väger 72 g. Slaggernas totala vikt är 219 g. Slaggerna är uppbygga av flera pålagrade slaggsträngar som är grå på undersidan och grå-röda på
översidan där de är magnetiska och något skrynkliga till följd av stelningen.

I delat tvärsnitt (fig. 5) framträder de pålagrade slaggträngarna tydligt, likt stearinslagger med mestadels täta slagger med större hålrum centralt i slaggsträngarna. Sammansättning är mestadels mycket likartad.

Figur 6. Priorn 11, Fnr 2478. Översikt från mikroskopet. Slaggsträngarna urskiljs med hjälp av tunna ljusa band av magnetit och skillnader i kornstorlek (finast närmast kontakterna).

Undersökning i mikroskop
Stora delar av slaggens tvärsnitt ingår i det undersökta provet. De okulärt observerade pålagrade slaggsträngarna syns även tydligt i mikroskop (fig. 6), med tydligt definierade kontakter. Slaggsträngarna är mycket likartat uppbygga och består av olivin, wüstit och en glasfas, samt sporadiskt små droppar av metalliskt järn. De är finkorniga i ytterkanterna till följd av relativt snabb avkyla, och något grövre mer centralt. Längs kanterna finns också en tunn zon av finkornig järnoxid.
(fig. 7). Denna är ställvis svår att urskilja men i de fall som kristaller kan observeras rör det sig dels om magnetit, dels om komplext sammansatta järnoxider.

St Clemens 4, Fnr 780530

Okulär granskning

Intakt konkav-konvex smidesskålla (fig. 8), oval i plan med måtten 130/155 mm. Tjocklek som mest ca 55 mm. Vikt 1381 g. Botten är täckt av sekundärt fastktitat material. Övertytan är mörkbrun med trögfluten slagg. Längs kanterna, nära övertytan, finns ställvis inneslutna kolstycken. Slaggen är lokalt magnetisk på övertytan, i övrigt omagnetisk.

Smidesskålla.

![Smidesskålla.](image1)

Figur 8. St Clemens 4, Fnr 780530. En nästan hel smidesskålla.

Kaplanen 8, Fnr 507

Okulär granskning

I fyndposten ingår ett större och nio mindre slaggment av samma typ, eventuellt från ursprungligen samma stycke. Det största stycket väger 133 g och är 55×40 mm i plan. Tjockleken är som mest 45 mm, vilket sannolikt är ursprunglig tjocklek. Slaggen är svartglasig och består av flera pålagrade slaggsträngar. Slaggen är extremt tät, speciellt i övre halvan.

I delat tvärsnitt framträder slaggens täthet och de pålagrade slaggsträngarna ännu tydligare.
Undersökning i mikroskop

Separata slaggflöden kan urskiljas med hjälp av tunna, ljusa strimmor och i vissa delar kan kristaller knappt urskiljas ens vid mikroskopets högsta förstorning. Lokalt kan dock tunna nälformade kristaller anas. Dessa är silikatmineralar, troligen pyroxen eller möjlichen olivin. De ljusa strimmorna utgörs av små kristaller av järnoxiden magnetit. I slaggens finns också extremit små droppar av metall som inte är järn utan koppar/kopparlegering.

Elektronmikrosondanalys

Kemiska analyser i några metalldroppar bekräftar att de huvudsakligen består av koppar. De innehåller också några tiondels procent av antimon och järn. Dessutom finns små blydroppar (< 1 mikrometer) i koppardroppen.

Kaplanen 8, Fnr 1278

Okulär granskning

I fyndposten ingår tre slaggfragment varav två sannolikt är del av samma slagg. En slagg är av klein-konvex, ca en fjärdedel. Vikt 458 g. Största längd är 95 mm vilket möjlichen motsvarar halva diametern. Tjocklek variarar från 20 till 35 mm. Slaggens är omagnetisk. Troligen har skållan varit plan-konvex med en förhöjning längs en ytterkant. Slaggen är täckt av sekundärt fastkittat material men en mörk, relativt porös slagg skymtar genom detta.

De två andra bitarna är fragment av annan karaktär. Total vikt 275 g. Storlek i plan ca 100×70 mm, tjocklek 25 till 60 mm. Slaggens är oregelbundet i formen och ingen tydlig skållform kan urskiljas. Slaggen är troligen tudenad. En halva utgörs av slagg som är uppbyggd av små slaggsträngar som har stelnat runt små kolstycen. Den andra halvan är glasigare slagg i form av ett större slaggflöde. Slaggen är mestadels omagnetisk men lokalt magnetisk vid rostiga fläckar. Samliga bitar är sannolikt smidesslagger.

Gråbrodern, Utan nummer

Okulär granskning

Del av plan-konvex smidesskålla, ca halv. Vikt 598 g. Diameter 120 mm, tjocklek som mest ca 50 mm. Bottenytan är täckt av sekundärt korroderat material, övertytan likaså. Där finns även fastkittade fragment av rödbänd lera, gråbränd lera, kolstycen och benfragment.

Schweizergränd, Fnr 78
Okulär granskning
Del av smidesskålla, fragment. Vikt 93 g. Inga ursprungliga ytterkanter i plan är bevarade men mätten är 60×45 mm. Tjockleken på ca 28 mm är dock ursprunglig. Slaggen är grå med en undersida som har stelnat mot sandigt underlag, övertytan är något ojämn med enstaka inneslutna kolstycken. I profil (fig. 9), men ej delad, framträder en något skiktad slagg.

Schweizergränd, Fnr 169
Okulär granskning

Vid delning visar det sig att stora delar av stycket består av svampigt metalliskt järn som är omgivet av slagg. Slagg dominerar i botten som ett ca 10 mm tjockt lager. Däröver finns järn och slagg tillsammans, med slagg huvudsakligen längs kanterna och järn mer centralt. Stycket är tämligen rikt på hålrum.

Det metalliska järnet är genomgående grovkornigt och har en mestadels låg, men något varierande kolhalt, med huvudsakligen ferrit och mindre mängder perlit.
Schweizergränd, Fnr 288
Okulär granskning
Oregelbunden slaggklump i form av ett fragment med mycket sekundär beläggning på ytan. Vikt 146 g. Största mått ca 50 mm. Inga ursprungliga ytterformer finns bevarade som antyder att det skulle vara en smidesskålla, varför denna slagg är svår att definiera.

Schweizergränd, Fnr 304
Okulär granskning
I fyndposten ingår två slaggfragment som troligen kommer från samma slaggstycke. Total vikt 279 g. Storlek i plan 75×55 mm, tjocklek 60 mm. Slaggen är grå, glasig till matt. Längs en omböjd ytterkant finns rödbränt lera på sidan. Längs denna finns flera pålagrade stearinliknande slaggsträngar.

Vid delning framträder ett heterogent uppbyggd stycke med en kant av rödbränt lera och växelvisa lager av slagg och delvis smått silikattrikt material.

Slagg och infodring tillsammans, utan tydlig skållform.

Schweizergränd, Fnr 307
Okulär granskning
I fyndposten ingår flera slaggfragment med mycket sekundär beläggning. Det största väger 197 g, är kantigt med rundade hörn i plan 70×50 mm, med en tjocklek som mest 35 mm. Möjligt är det del av en smidesskålla, men den saknar den typiska plan-konvexa formen. På bottenytan finns tunnare stearinliknande slaggsträngar medan övertytan utgörs av mer lättflutna större slaggflöden. Lokalt finns inneslutna kolstycken, bland annat nära bottenytan.

Vid delning framträder en homogent uppyggd slagg, dock med något varierande porositet. Större porer förekommer i botten och överst, däremellan är de mindre i storlek.
Undersökning i mikroskop

Slaggen är en homogen, relativt grovkornig skålla som innehåller mycket wüstit. Små droppar av metalliskt järn, fåtal av koppar(legering) förekommer i slaggen.

Figur 12. Schweizergränd, Fnr 307 i mikroskop. Översikt på homogen slagg som är relativt grovkornig och innehåller wüstit (ljus), olivin och glas.

Abboten 1, Fnr 54
Okulär granskning
Fyndposten innehåller en större och fem mindre slagfragment av liknande typ. Det största väger 490 g och är del av en plan-konvex smidesskål med största mätt 100 mm som är något mindre än hela diametern. Maximal tjocklek är 40 mm centralt. Slagen är omagnetisk, grå, och nästan metallglänsande runtom.

I delat snitt (fig. 14) framträder en mycket homogen uppbyggd slagg såväl vad gäller sammansättning som porförekomst och -storlek. Enstaka droppar av metalliskt järn kan observeras på snittytan.

Figur 15. Abboten 1, Fnr 54. Översikt från mikroskopet på slaggen som domineras av olivin (ljus grå) och en glasfas (mörkare grå). Wüstit förekommer i mindre mängd (tunna ljusa formationer).

Figur 16. Abboten 1, Fnr 54. Detalj från mikroskopet som visar att olivinkristallerna är zonerade, dvs., deras yttersta kant (mörkare grå; se pil) har en avvikande sammansättning.

Undersökning i mikroskop
Slaggen är mycket homogen i sin uppbryggnad även i mikroskala (fig. 15). Den är tämligen grovkornig i hela sin tjocklek förutom allra närmast botten där den är något finkornigare. I hela slaggen förekommer grovkorniga olivinkristaller (zonera; se fig. 16), något finkornigare dendritisk wüstit och en glasfas. Olivin förekommer även som något finkornigare långsmala kristaller. Metalliskt järn, i form av små droppar förekommer ytterst sparsamt, i den allra översta respektive nedersta delen, där metallen delvis också har rostat.

Homogen skälla! Den är grovkornig (långsam avsvalning) och innehåller både olivin och wüstit samt små droppar av metalliskt järn.
Abboten 1, Fnr 153

Okulär granskning

Smedjan 7, Fnr 138

Okulär granskning

I fyndposten ingår flera slaggfragment av lite olika karaktär. En typ utgörs av glasiga strängar, där några är större med flera pålagrade slaggsträngar, andra är mindre och består enbart av enskilda slaggsträngar. Den största väger 71 g, är ca 80×65 mm i plan och som mest ca 18 mm tjock.

Två andra fragment är delar av en smidesskål, troligen nästan plan-plan. Inga originalytterkanter är bevarade. Av diametern återstår ca 50 mm. Tjockleken är troligen ursprunglig, ca 25 mm. Den största delen väger 125 g. I skållan kan enskilda slaggflöden också urskiljas, men i snitt förefaller slagen vara homogen i sammansättning. Långs brotttyta finns också fläckar av gråbränd lera som antingen är insmält i slagen eller sekundärt fastkittad.

Smedjan 7, Fnr 142

Okulär granskning

I fyndposten ingår fyra slaggfragment. Det största väger 71 g och är 43×40 mm i plan. Tjockleken är som mest ca 35 mm. Slaggen har former som antyder att den har stelnat i en rännan snarare än en rundare försänkning. Den är uppbyggd av flera pålagrade, relativt lättflutna slaggflöden (fig. 17) som är något mindre i botten och något större i de övre delarna. Slaggen är mestadels grå med en nästan oljig övertyta.

I delat tvärsnit (fig. 18) framträder de pålagrade slaggsträngarna tydligt. Dessa är mestadels tät men har ett centralt större hålrum. Slaggen förefaller vara homogen i sammansättning.

Undersökning i mikroskop

De okulärt väl synliga slaggsträngarna framträder tydligt även i mikroskop. Slagen är mycket likartad i sammansättning och kornstorlek i alla slaggsträngar. De består av relativt finkornig olivin, wüstit och en glasfas. Kontakterna (fig. 19) mellan slaggsträngarna definieras av små skillnader i kornstorlek i korstorlek (finkornigare) och en ansamling av små hålrum. Däremot finns inte någon tunn zon av magnetit. Sporadiskt förekommer också små droppar av metalliskt järn.

Slaggen har ett utsende som en vanlig reduktionsslagg, stearinsslagg, som har stelnat i slagguppsamlingsutrymme i ugnens nedre del. Den innehåller små droppar av metalliskt järn.

Figur 18. Smedjan 7, Fnr 142 i delat tvärsnitt där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas.

Figur 19. Smedjan 7, Fnr 142. Detalj från mikroskopet, där kontakten mellan slaggflöden syns med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.
Smedjan 7, Fnr 259
Okulär granskning
Oregelbundet slaggfragment med endast en ursprunglig ytterkant.
Troligen del av homogen uppbyggd smidesskålla, med en tjocklek
över 32 mm.

Figur 20. Smedjan 7, Fnr 485. Smidesskålla i delat tvärsnitt som tydligt visar två lager av
slagg med olika sammansättning.

Smedjan 7, Fnr 485
Okulär granskning
I fyndposten ingår två fragment av likartad slagg. Den största väger
333 g, är rund till kantig i plan ca 80×80 mm stor med en tjocklek på ca
30 mm över i stort sett hela slaggen. På slaggen finns mycket sekundärt
fastkittat material runtom vilket gör det svårt att få en uppfattning om
ursprunglig form.

Vid delning av den största biten framkommer en slagg som är
uppbyggd av två olika skikt (fig. 20). Den nedre halvan består av en grå,
relativt tät slagg. Den övre utgörs av något ljusare gröngrå slagg med
något större porer. På övertytan och lokalt i sprickor finns sekundärt
fastkittat material.

Undersökning i mikroskop
Den tydliga skiktning som framträder i tvärsnitt syns tydligt även i
mikroskop. I botten finns ett tunt skikt av material som sekundärt har
kittat fast i slaggen. Över detta finns ett lager av wüstitrik slagg som
övergår i olivinrik slagg. Gränsen mellan dessa kantas av sekundära
bildningar och det är inte möjligt att se hur kontaktytan primärt har
bildats. Allra överst finns ett likartat fastkittat skikt som i botten
innehåller såväl sandkorn som kolstycken och glödskalsfragment.
Slaggen i den nedre halvan domineras av wüstit som är tämligen
grovkornig (fig. 22). Dessutom förekommer en glasfas och relativt rikligt
med svampiga bildningar av metalliskt järn. Slaggen i den övre delen
(fig. 21) är något finkornigare och innehåller långsmala olivinlameller, en
glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre
halvan. I den övre delen finns också svampiga bildningar av metalliskt
järn.
I det fastkittade bottenskiktet, samt i några bottennära hålrum finns små förekomster av koppar/kopparlegering. Någon sådan har dock inte noterats primärt i slaggen. Här rör det sig möjligt om att slaggen har legat i en miljö där kopparhaltigt material också har funnits.

Figur 21. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slaggen i den övre delen som innehåller långsmala olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan (se nästa figur).

Figur 22. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slaggen som i den nedre halvan domineras av wüstit som är tämligen grovkornig.

Stora Torget C5819:15, WII:12

Okulär granskning
Smidesskålla, nästan komplett, men i två delar (fig. 23). Den är plankonvex även om botten är diffust konvex. Vikt 383 g. Oval i plan med största mått 125 mm och minsta 85 mm. Tjocklek som mest 30 mm.
Sekundärt material finns fastkittat runt om vilket döljer mycket av slaggens detaljer.

I delat tvärsnitt (fig. 24) framträder slaggens karaktär bättre. Den är något skiktad med avseende på porositet, med mer porer i nedre halvan och mindre i övre. Möjligtvis finns en skillnad i sammansättning som syns i form av ljusare slagg i nedre delen. Lokalt finns små droppar av metalliskt järn, främst i nedre halvan.

Figur 24. Stora Torget C5819:15, WII:12 i delat tvärsnitt som visar att slagen är skiktvis uppbyggd.

Undersökning i mikroskop

Den skiktvisa uppbyggnad som är tydlig okulärt syns i mikroskop med hjälp av skillnader i kornstorlek och kornform (fig. 25). Sammansättningen är dock homogen i hela slaggens tjocklek. Slagen består av olivinkristaller, en grövre och en finkornigare, och en glasfas. Lokalt förekommer mycket finkornig järnoxid (magnetit?) tillsammans med de finkorniga olivinkristallerna. Dessutom förekommer en del större, oregelbundna bildningar av metalliskt järn (fig. 26), främst i den nedre halvan. I botten finns också ett fåtal insmält kolstycken.
Slaggen är en homogen, grovkornig, olivinrik smidesskålla med större, oregelbundna bildningar av metalliskt järn.

Figur 25. Stora Torget C5819:15, WII:12. Översikt från mikroskopet som visar att slaggen består av olivin (ljusare grå) och en glasfas (mörkare) men att det finns skillnader i kornstorlek med grövre korn i den nedre delen.

Fyndback ur Nihléns samling märkt "22 st järnklumpar"
Okulär granskning
I fyndposten finns del av en plan-konvex smidesskål, troligen oval i form men ursprunglig form är något osäker. Största mått i plan är 120 mm. Tjockleken, som är ursprunglig är 45 mm. Sekundärt material finns fastkittat runtom. Skållan är mestadels omagnetisk men lokalt magnetisk på övertytan.

Fyndback ur Fardelins samling märkt "12 st järnklumpar"
Okulär granskning
I fyndposten finns en nästan intakt konvex-konvex smidesskål. Vikt 593 g, diameter 100 mm, tjocklek 55 mm. Omagnetisk. Mycket sekundärt material finns fastkittat runtom slاغgen men i profil framträder en tämligen homogen sammansatt slagg.

Slagg från Tekniska museets samling, TM 16858, Stora Homa, Stenkumla sn, från John Nihléns undersökning 1929
Okulär granskning
Tre fragment från en ursprungligen betydligt större slagg av typen bottenslagg. Släggen är uppbyggd av flera pålagrade slaggsträngar (fig. 27) som är ljusgrå på ytan. Den är omagnetisk och har kolavtryck. På brottytor framträder en mörkgrå, tämligen tät slagg.

Undersökning i mikroskop
De påbyggda, tunna slaggsträngar som observeras tämligen tydligt okulärt syns även i mikroskop (fig. 28) men inte lika tydligt. Kontakterna är något diffusa men kan anas med hjälp av skillnader i kornstorlek där kontakterna är något finkornigare än mer centrala delar i varje slaggsträng, även om denna också är tämligen finkornig. Släggen innehåller olivin, wüstit och en glasfas. Proportionerna mellan dessa är något olika i de enskilda slaggsträngarna (fig. 29), men skillnaden är inte speciellt stor även om wüstit nästan saknas i vissa. I slaggsträngarna förekommer också enstaka droppar av metalliskt järn.
Detta utseende är typiskt för reduktionsslagger. Denna är dock relativt finkornig för karaktäristiska stearinslagger som har stelnat i ett slagguppsamlingsutrymme, men den saknar den tunna zon av magnetit som vanligtvis bildas om slaggen stelnar utanför ugnen. Men, i några av de olivinriktaste slaggsträngarna är det magnetit och inte wüstit som förekommer! Slaggen är från järnframställning, men inte självklart vilken ugnstyp Den innehåller enstaka droppar av metalliskt järn.

Figur 28. TM 16858 från Stenkumla sn. Översikt från mikroskopet som visar tre olika slaggflöden med tydliga kontakter (se även nästa figur).

Tabell 2. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Visby.

<table>
<thead>
<tr>
<th>Kvarter/gata</th>
<th>Benämning</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweitzer gränd</td>
<td>169</td>
<td>Smidesskälla med koncentration av järn</td>
<td>Järnet: mestadels låg, men något varierande kolhalt. Svampigt och omgivet av slagg.</td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>142</td>
<td>Homogen slagg. Morfologiskt likt reduktionsslagg.</td>
<td>Ser ut som en vanlig reduktionsslagg, stearinsslag (ol, wu, gl), som har stelnat i slagguppsamlingsutrymme i ugnens nedre del. Små droppar av metalliskt järn.</td>
</tr>
</tbody>
</table>

Lödöse

Slagger från Lödöse är utvalda från kvarter som bedömt ha bäst anknytning till järnsmide. Kvarter med annat hantverk har ej prioriterats. Slaggerna har benämning efter de delområden som har undersökts vid olika tillfällen och som presenterats av Andersson (2010). På kartan (fig. 30) framgår var dessa delområden finns.
Tabell 3. Förteckning över slagger från Lödöse, från Lödöse museum.

<table>
<thead>
<tr>
<th>Område</th>
<th>Benämning</th>
<th>Kommentar</th>
<th>Prov</th>
<th>Datering</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>169</td>
<td>Del av större skålla</td>
<td>T, ICP</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MK</td>
<td>320</td>
<td>Del av skälla (?), avvikande översida</td>
<td>T, ICP</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MK</td>
<td>600</td>
<td>2 små, tunga, platta skåller</td>
<td>P</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MH</td>
<td>136</td>
<td>1 skålla, mot vägg</td>
<td>T, ICP</td>
<td>Ej före 1200</td>
</tr>
<tr>
<td>MG</td>
<td>283a</td>
<td>1 oregelbunden slagklump</td>
<td>T, ICP</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MG</td>
<td>329</td>
<td>1 oregelbunden slagklump</td>
<td></td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MM</td>
<td>572e</td>
<td>1 slaggfragment, ej skälla</td>
<td>T, ICP</td>
<td>11-1400-tal</td>
</tr>
<tr>
<td>MM</td>
<td>584e</td>
<td>1 oregelbunden slagklump</td>
<td></td>
<td>11-1400-tal</td>
</tr>
<tr>
<td>ME</td>
<td>2</td>
<td>2 skåller</td>
<td>T, ICP, E</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>ME</td>
<td>3</td>
<td>1 skålla, 1 järnrik klump</td>
<td>P</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MC</td>
<td>4</td>
<td>SL:MC, 1 stor skälla</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>16</td>
<td>SL:MC, skälla mot vägg</td>
<td>P, T, ICP</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>18</td>
<td>SL:MC, 1 skälla</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>19</td>
<td>SL:MC, 3 skåller</td>
<td>T, ICP (av nr 1)</td>
<td></td>
</tr>
</tbody>
</table>

I kolumnen ”Provtyp” har noterats vilka som har analyserats ytterligare. T = tunnslip för prov som undersökts petrografiskt, ICP = prov som analyserats med totalkemiska analyser, P= polerprov som undersöks metallografiskt, E= prov som har analyserats med elektronmikrosond.

MK, Fnr 169

Okulär granskning

I delat tvärsnit är slaggen mycket homogent uppyggd (fig. 32). Enstaka hålrum finns nära kanterna men i övrigt är slaggen tät. Enstaka inslag av insmält silikatrikt material finns nära övertytan. Trots det ärggröna området i brottytan kan inget metalliskt kopparkalt material observeras med blotta ögat på tvärsnittstytan.

Undersökning i mikroskop

Slaggen är tämligen homogent uppyggd och domineras av grovdendritisk wüstit. Olivin och en glasfas förekommer i betydligt mindre mängd (fig. 33). Proportionerna mellan de ingående mineralen varierar dock något nerifrån och uppåt utan några väl definierade gränser. Lokalt förekommer droppar av koppar (fig. 34), men inget metalliskt järn har observerats.
I mikroskala saknar denna slagg drag som är karaktäristiska för smidet, speciellt föremålssmide. På slaggens yta syns grönärgade områden som mycket riktigt påvisar innehåll av metallisk koppar. Dessa förekomster är dock endast mikroskopiska och kan ej observeras med blotta ögat.

Figur 31. MK, Fnr 169, fragment av smidesskälla med ett grönärgigt inslag.

Figur 32. MK, Fnr 169 i tvärsnitt som visar en mycket homogent upptag slagg.
Figur 33. MK, Fnr 169 i mikroskop. Översikt på den homogena slaggen som domineras av wüstit (ljusgrå) med olivin och glas i mindre mängd. Små metalldroppar (ljusa) är fåtaliga.

Figur 34. MK, Fnr 169 i mikroskop. Detalj som visar slaggens metalldroppar (ljus röda) som består av koppar.

MK, Fnr 320

Okulär granskning

Den delade tvärsnittsytan upphäviser en mestadels homogen slagg. Diffust kan en skiktvis uppbyggnad ansas med hjälp av skillnader i porositet. Små kolstycken finns insmält i botten och lokalt även högre upp i slaggen.
Undersökning i mikroskop
I mikroskala saknar denna slagg drag som är karaktäristiska för smidet, speciellt föremålssmide.

MK, Fnr 600
Okulär granskning
Järnet är genomgående grovkornigt och mestadels tämligen kolrikt. Till stora delar dominerar perlit (lokalt med lite cementit) men ställvis är kolhalten lägre där ferritandelen är något större.

Figur 35. MK, Fnr 600, smidesskålla 1 i tvärsnitt.
MH, Fnr 136
Okulär granskning

I tvärsnitt (fig. 38) syns en homogen slagg med små, diffusa variationer i porositet, men mestadels tät. Inget metalliskt järn är synligt trots att slaggen är magnetisk på övertytan.

Undersökning i mikroskop
I mikroskop framträder en slagg som består av nästan endast järnoxider (fig. 39). I stora drag är den homogen även om det finns variationer i vilka järnoxider som förekommer. Mestadels dominerar dendritisk wüstit, men magnetit i är vanligare i vissa partier (fig. 40). Wüstiten visar sig också ha inslag av magnetitsammansättning. Underordnat förekommer silikatrikare faser i form av olivin och en glasfas. Längs kanterna finns en del fastkittat material, bland annat glödskalsliknande fragment. Metalliskt material saknas förutom ett fåtal droppar av järn.

Eftersom metalliskt järn i princip saknas är det magnetit som orsakar skållans magnetism. Vid första granskning i mikroskop förefaller den omagnetiska wüstiten dominerar, men vid närmare granskning ser man att den är komplext uppbyggd med inslag av magnetit och att magnetit också dominerar i vissa delar, vilket märks i form av något starkare magnetism.

Figur 39. MH, Fnr 136 i mikroskop. Översikt på slaggen som domineras av järnoxider, såväl wüstit som magnetit (båda ljust grå). Magnetit förekommer som kantigare kristaller (se även nästa figur) och wüstit i rundare, mjukare former.
Figur 40. MH, Fnr 136 i mikroskop. Detalj som visar förekomsten av magnetit som kantiga ljus grå kristaller, omgivna av en grå glasfas.

MG, Fnr 283a

Okulär granskning
Oregelbunden slagg (smidesskålla?). Vikt: 135 g. Slaggen är gulbrungrå och har oregelbunden form (fig. 41). Den har kolavtryck och är svagt magnetisk.

Den delade slaggen är homogen och tämligen ljus jämfört med många andra. Den är omgivna av mycket sekundärt fastkittat material. Slaggen har ingen tydlig ytterform men slaggen förefaller vara av liknande typ som många av de andra slaggerna från samma lokal.

Undersökning i mikroskop
Slaggen är relativt homogent uppbyggd med utseende som är vanligt i reduktionsslagger. Den består av finkorniga olivinlameller, dendritisk wüstit och en glasfas. Metalliskt järn förekommer i form av små droppar och något större oregelbundna bildningar.

Figur 41. MG, Fnr 283a, mindre smidesskålla.
MG, Fnr 329

Okulär granskning

Oregelbunden slagg (fig. 42) som är gråbrun och har oregelbunden form och avtryck efter kol. Slaggen är svagt magnetisk.

I tvärsnitt visar det sig att endast en liten del slagg finns bevarad. Slaggen är också omgiven av mycket sekundärt material, även fastkittat.

![Figur 42. MG, Fnr 329, oregelbunden slagg.](image)

MM, Fnr 572e

Okulär granskning

Oregelbundet slaggfragment. Vikt: 38 g. Slaggen är gråbrun, har oregelbunden form och är magnetisk. I tvärsnitt syns en slagg som huvudsakligen är homogen men lokalt har inneslutna kolstycken och insmält silikatrikt material.

Undersökning i mikroskop

Slaggen liknar MG283a men är något grövre. Den har också mer sekundära bildningar och insmält glasigt material.

MM, Fnr 584e

Okulär granskning

Oregelbunden slagg med gulbrungrå färg och oregelbunden form. Slaggen har kolavityck samt ställvis smält material. Den är svagt magnetisk. Ett område med smält material med grå färg är magnetiskt.

I tvärsnitt (fig. 43) framträder en till stora delar homogent uppbyggd, småporig, slagg. Längs botten och delvis längs kanter finns större hålrum och inslag av insmält silikatrikt material.
ME, Fnr 2

Okulär granskning

Undersökning i mikroskop
Skållan (nr 1) är diffust skiktad (fig. 45). Skikten är ej väl avgränsade utan framträder diffust med hjälp av varierande proportioner mellan de ingående mineralen. I nedre halvan finns också ett skikt som är mer sekundärt påverkat än resten av slagen. I botten finns också en del fastkittat material. I slaggens alla skikt finns olivin, wüstit och en glasfas. I den nedre delen förekommer också leucit. Droppar av metalliskt järn förekommer i liten mängd i hela slagen. Droppar av koppar(legering) är också observerade, främst i slaggens övre delar. Möjliga förekommer droppar med en blandning av järn och koppar (fig. 46) i slaggens centrala och nedre delar.
Elektronmikrosondanalys
Analyser med elektronmikrosond på metalldropparna visar att en typ utgörs av en kopparlegering i form av brons med tennhalt på ca 11 %. Metallen innehåller dock även järn (ca 2,5 %, analys ME2_4 i tabell 6). Det finns, som observerats i mikroskop, också komplexa metalldroppar där en del domineras av järn men med några vikt procent koppar (ca 4 %, analys ME2_1-2 i tabell 6) och med spårhalter av kobolt och arsenik. Droppens andra del domineras av brons med järninnehåll med liknande halter som i de homogena dropparna.

ME, Fnr 3
Okulär granskning

Slaggfragmentet har oregelbunden form och har blågrå och gulbrun färg. Vikt: 97 g. Slaggen är magnetisk. I tvärsnitt framträder en koncentration av metalliskt järn, ca 15×7 mm stor, omgiven av slagg och/eller rost.

Konsentrationen av järn har en kolhalt som varierar något; från mestadels perlit till ferrit och perlit. Texturen är genomgående grovkornig.

Figur 47. ME, Fnr 3, smiedesskålla i tvärsnitt.

Figur 49. MC, Fnr 4 i mikroskop. Översikt där slaggen innehåller stor ansamling av metall. Slaggen innehåller västtit, olivin och en glasfas. Analyser visar att metallen är en kopparlegering som innehåller både tenn och järn samt spår av antimon.

MC, Fnr 4
Okulär granskning

I tvärsnitt framträder en huvudsakligen homogen slagg. Den är dock något skiktad med avseende på porstorlek med omväxlande större och mindre porer. I nedre halvan finns en svampig ansamling av metall som sannolikt är kopparrik (fig. 48).
Undersökning i mikroskop
Slaggen är relativt homogen i sin uppbyggnad och innehåller wüstit, olivin och en glasfas. Den liknar slagen i ME 2 men har något mer wüstit. Främst i nedre halvan förekommer rikligt med svampiga bildningar av metall som sannolikt är dominerad av koppar men troligen inte ren koppar (fig. 49). Metalliskt järn förekommer i betydligt mindre mängder och enbart som små droppar.

Elektronmikrosondanalys
Analyser med elektronmikrosond på den större metallkonzentrationen bekräftar observationerna i mikroskop om att den består av två olika faser. Den dominerande, kopparrika, är en brons med ca 4 % tenn, knappt 1 % järn samt 0,5 % antimon. Analys över en större yta som omfattar även den kopparfattigare fasen visar att totalt sett innehåller legeringen ca 68 % koppar, drygt 26 % järn och drygt 6 % tenn.

Figur 50. MC, Fnr 16, smidesskålla med avtryck mot vägg till höger i bild.

MC, Fnr 16
Okulär granskning
Intakt, plan-konvex smidesskålla (fig. 50). Vikt: 2328 g. Formen i plan är oregelbunden (avtryck mot vägg). Skällan är 140 mm i diameter och 80 mm tjock. Ovansidan är ojämna, med ett avtryck mot vägg med smält material samt bränd lera (?). Undersidan är slät. På ovansidan finns kolavtryck, enstaka kolavtryck finns även på undersidan. Skällan har gulbrun färg. Den är svagt magnetisk och partiet med avtryck mot vägg är magnetiskt.

I tvärsnitt (fig. 51) framträder en mycket homogen slagg som huvudsakligen är tät. Ställvis förekommer dock även större porer. I slaggens nedre del finns en ansamling av svampigt metalliskt järn, ca 38 mm bred och 10 mm hög.

Undersökning i mikroskop
Det undersökta tvärsnittet, i skällans nedre halva, är tämligen homogent uppbyggt. Slagen är tämligen grovkornig och domineras av olivin (fig. 52). Dendritisk wüstit och en glasfas förekommer i mindre mängder.
I de nedre delarna förekommer även leucit sporadiskt. Metalliskt järn förekommer mycket sparsamt och endast som mycket små droppar.

Den större koncentrationen av metalliskt järn domineras av ferrit, möjligen med små nitridnålar lokalt. I järnet finns också innesluten slagg som är av liknande sammansättning och kornstorlek som i den omgivande slaggen, dvs. olivin, glas och järnoxider.

Figur 51. MC, Fnr 16, smidesskållan i tvärsnitt. Nere till höger syns en större koncentration av metalliskt järn.

Figur 52. MC, Fnr 16 i mikroskop. Översikt på slaggens övre delar. Likt många andra slagger innehåller den wästit, olivin och en glasfas, men mängden olivin är relativt hög.

MC, Fnr 18

Okulär granskning

Intakt, plan-konvex smidesskålla. Vikt: 391 g. Formen i plan är oval. Skållan är 110 mm i diameter och 25 mm tjock. Ovansidan är ojämn och har på ena sidan (fig. 53) en något förhöjd yta med gräbränt och smalt material (blästeringång?), undersidan är slät. Kolavtryck finns på

Slaggen är delad parallellt med sidan som sitter mot vägg, dvs. snittet går ej genom den brända leran. I snittet finns en homogent uppbyggd slagg (fig. 54) som är porös i botten och tätare högre upp.

Undersökning i mikroskop

Figur 53. MC, Fnr 18, smidesskålla med avtryck efter förmodad blästeringång i bildens övre del.

Figur 54. MC, Fnr 18, smidesskållan i tvärsnitt.
Järnsmide i Visby och Lödöse

Figur 55. MC, Fnr 18 i mikroskop. Översikt på slaggens nedre delar. Här förekommer wüstit, olivin och glas i något varierande proportioner.

Figur 56. MC, Fnr 19, smidesskälla 1 i tvärsnitt.

MC, Fnr 19

Okulär granskning

Fyndposten består av tre smidesskällor. Den minsta smidesskällan (1) är intact och konvex-konvex. Vikt: 547 g. Formen i plan är oval. Skållan är 110 mm i diameter och 40 mm tjock. Ovansidan är slät och undersidan är relativt slät. Enstaka kolavtryck finns på ovansidan, samt i något större mängd på undersidan. Skållan har rostbrun och gulbrun färg.

Smidesskälla 1 är svagt magnetisk. I tvärsnitt (fig. 56) syns en mestadels homogen slagg med något större porer allra överst, men i övrigt är porerna betydligt mindre. Denna skålla har valts för kemiska analyser och undersökning i mikroskop.

Smidesskälla 2 är svagt magnetisk. I delat tvärsnitt syns att skållan är
uppbyggd av åtminstone två olika material. Nederst förekommer egentlig slagg upp till en höjd som gör skållan plan-konvex. Över detta finns en påbyggnad med mycket sekundärt material, kolstycken och silikatikritiskt material.

Undersökning i mikroskop

Tabell 4. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Lödöse.

<table>
<thead>
<tr>
<th>Område</th>
<th>Nr</th>
<th>Kommentar</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>169</td>
<td>Del av större skålla</td>
<td>Del av smidesskålla, homogen i tvärsnitt. Tat. Grönärgigt inslag.</td>
<td>Domineras av w, grovdendritisk, lite ol + gl. Droppar av koppar lokalt! Inget metalliskt järn</td>
</tr>
<tr>
<td>MK</td>
<td>320</td>
<td>Del av skållan (?), avvikande översida</td>
<td>Del av smidesskålla, homogen i tvärsnitt. Något porösare än MK 169</td>
<td>Homogen, wüstitdominerad. Inget metalliskt järn eller koppar.</td>
</tr>
<tr>
<td>MK</td>
<td>600</td>
<td>Skålla nr 2 (av 2)</td>
<td>Skålla nr 2 har centrat en större koncentration av svampigt metalliskt järn</td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>329</td>
<td>Oregelbunden slagklump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>572e</td>
<td>Slaggfragment, ej skålla</td>
<td>Oregelbunden slagg. Jfr 283a</td>
<td>Liknar MG283a, något grövre. Mer sekundära bildningar. Mer inäktat glasigt material</td>
</tr>
<tr>
<td>MM</td>
<td>584e</td>
<td>Oregelbunden slagklump</td>
<td>Oregelbunden slagg. Mestadels</td>
<td></td>
</tr>
<tr>
<td>Område</td>
<td>Nr</td>
<td>Kommentar</td>
<td>Okulär observation</td>
<td>Observation i mikroskop</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ME 3</td>
<td></td>
<td>Järnrik klump (även skålla)</td>
<td>Slaggfragment med stor oregelbunden koncentration av metalliskt järn</td>
<td>Slagen relativt homogen; wüstit, olivin, glas. Liknar ME2 men något mer wüstit. Innehåller flera metaller, järn, kopparlegering med tenn, järn, antimon.</td>
</tr>
</tbody>
</table>

Kemiska analyser
Analytisk bakgrund
I den inledande texten om analyser och analytiska metoder har vi beskrivit möjligheter och svårigheter med tillämpning av kemiska analytiska metoder på smidesslagger. Vi diskuterade också den komplexiteten som ligger bakom hela processkedjan från malm till föremål och de slagger som bildas vid flera av dessa processer och hur slaggerna kan användas i tolkningen av processerna och råvarornas ursprung. För att kunna tolka och utvärdera analyserresultaten behandlar vi här ytterligare några förutsättningar.

Smide jämfört med framställning och råvara – en saknad pusselbit
Att analysera smidesslagger för att försöka korrelera med malm och reduktionsslagger medför att det saknas information om ett led och en produkt i kedjan. Under järnframställningsprocessen fördelar sig

I jämförelsematerialet ingår också platser där järnframställningen är äldre än de aktuella städernas slaggar. Dessa har inkluderats ändå eftersom deras kemiska sammansättning, oavsett datering, speglar respektive regions malmer och hur slaggerna som bildas vid användandet av dessa, ser ut ur ett kemiskt perspektiv. Det är också värdefullt att ta med dessa för att se vilken fördelning av kemisk sammansättning som finns inom området, och om det över huvudtaget är realistiskt att försöka urskilja vissa ursprungsområden. Till sist vill vi nämna att vi inom ramen för denna studie endast har jämfört med material från områden i dagens Sverige.

Analysresultat

Resultat i korthet

Resultaten från analyserna återges i sin helhet i tabellform (tabell 5). Huvudämnenen presenteras enligt konventionellt sätt som oxider, även detta när järn även har räknats om till FeO även om järnet förekommer i många olika konstellationer. Spårämnen presenteras i egen del som rena element i mg/kg, också på konventionellt sätt. Koppar har ej ingått i den
använda analytsrutinen (se metodtext) men är observerat i flera slagger med hjälp av andra metoder. För att kunna jämföra de olika ämnena har diagram använts där huvud- och/eller spårämnen har jämförts parvis. Vi kommer att behandla en del av dem mer ingående nedan.

Ämnen som förekommer i betydligt lägre halter, s.k. spårämnen (nedre delen av tabell 5) kan vara av betydelse för att jämföra slagger med varandra och malmer för att se om det finns ett gemensamt ursprung, och om detta kan kopplas till någon specifik geologisk/geografisk miljö.

![Diagram](image-url)

Figur 57. Jämförelse av slaggernas innehåll av mangan (som MnO) och magnesium (som MgO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och reduktionsslaggen TM16858 (fylld cirkel).
Ett drag som är utmärkande och genomgående för slag grar från såväl Visby som Lödöse är att de innehåller tämligen låga halter av alla ämnen utom kisel och järn. En del av dem har till och med riktigt höga järnhalter vilket också framgår av den petrografiska undersökningen i mikroskop som wüstitrika slaggar. Sådana höga järnhalter skulle också kunna innebära att slaggarna har tillskott av oxiderat metalliskt järn, vilket i så fall försvårar möjligheten att använda dem som indikatorer på ursprung, eftersom reduktionsslaggens och följaktligen malmens signatur då har minskats. De flesta slaggar har dock tolkats som primärsmidesslaggar och använts i de fortsatta tolkningarna.

Manganhalten når inte över 1 viktsprocent MnO i någon av smidesslaggerna (fig. 57). Endast reduktionsslaggen från Stenkumla socken på Gotland har högre halter (ca 3 % MnO). De tämligen låga manganhaltarna indikerar följaktligen att det är manganfattiga malmer som har använts, under förutsättning att de analyserade slaggarna till stora delar har ärvt reduktionsslaggernas sammansättning. Magnesiumhalten ligger på samma storleksordning, dvs. mestadels några viktsprocent MgO i de allra flesta slaggerna (fig. 57). Även fosforhalten ligger på några tiondels viktsprocent (som P₂O₅) för de flesta slaggerna (fig. 58). I en slagg (MG283a från Lödöse) når den ca 1 %. En slagg från...
Visby (Fnr 507 från Kaplanen 8) har emellertid 10 gånger så högt fosforinnehåll. Denna slagg har dock också extremt högt kalciuminnehåll i kombination med lågt järninnehåll och representerar dock inte samma process som de övriga slaggerna och bör inte heller ingå i samma typ av utvärderings arbete.

Spårämnesinnehållet i slaggerna är mestadels också lågt och det finns stora likheter mellan slagger från de båda städerna. En del ämnen förefaller dock skilja sig åt mellan städerna och vi återkommer lite mer detaljerat kring detta genom att specialstudera t.ex. krom och vanadin, liksom de sällsynta jordartsmetallerna.

Resultat i jämförelse med smidesslagger från andra platser

Som framgår av tabell 5 finns många likheter mellan slaggerna i Visby respektive Lödöse, men även mellan de båda städerna. De variationer som uppträder inom Visby motsvaras av en variation av samma storleksordning i Lödöse, även om undantag finns, t.ex. vad gäller fosfor och kalcium. Intressant är därför att också jämföra med slagger av liknande typ, mer eller mindre samtida, huvudsakligen från andra städer.

I figurerna 59–61 kan vi notera att såväl mangan och magnesium som fosfor och kalcium, liksom spårämnen krom och vanadin förekommer i motsvarande låga halter i många av referensslaggerna från smidet.

![Diagram](attachment://figur_59.png)

Figur 59. Jämförelse av slaggernas innehåll av mangan (som MnO) och magnesium (som MgO). Data från figur 57 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.
Figur 60. Jämförelse av slaggernas innehåll av fosfor (som P$_2$O$_5$) och kalcium (som CaO). Data från figur 58 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.

Två ämnen som skiljer Visbys slagger från Lödöses är kalciuminnehållet, som är högre i slaggerna från Visby, som grupp och fosforinnehållet som generellt är högre i Lödöses slagger. Om vi jämför med smidesslager från andra områden (fig. 60) ser vi att dessa värden inte är unika utan att det förekommer motsvarande händelser även från andra platser.

I diagrammen (fig. 59–60) finns också några analysresultat från slagginneslutningar i järn (Buchwald 2008) bland annat från Lödöse. Där framkommer att det finns föremål med slagginneslutningar med en sammansättning som markant avviker från de analyserade slaggerna från samma plats, dvs. de visar att det finns flera olika ursprung för järnet på en och samma plats.
Järnsmide i Visby och Lödöse

Figur 61. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för smidesslagger (se text för referenser). Kromhalten är lägre i slaggerna från Lödöse än i slaggerna från Visby, för samma vanadinhalt.

Resultat i jämförelse med malmer
Bland slaggerna i Visby påträffades, som nämnts i inledningen, också några malmklumpar som av experter bedömts komma från Utö gruvor. Vi har redan diskuterat effekterna av en sådan förekomst för den anmärkningsvärt tidiga gruvbrytningen klumparna indirekt signalerar. Likaså skapar malmförekomsten en inkonsekvens i processleden i smidet i staden med en förväntad samtida hytta som först borde ha producerat ett järn som sedan smiddes vidare – vilket inte är rimligt i sammanhanget. Frågan är om det är möjligt att med hjälp av de kemiska analysresultaten klargöra detta ytterligare.

En generell jämförelse med malmer kan göras med hjälp av några få huvudämnen. Samtidigt kan malmerna delas in i två grupper. Den första, limonitiska, omfattar myr- och sjömalmer samt rödjo rdar medan den andra utgörs av bergmalmer som i Sverige är järnöxidmalmer, t.ex. magnetit och hematit. Bland de limonitiska malernina är det vanligt med höga halter av mangan (även flera viktsprocent), liksom fosforinnehåll. Magnesium och kalcium förekommer dock oftare i lägre halter. För bergmalmer är förhållandet, något förenklat, tvärtom. I figur 62 jämförs mangan och magnesium i slaggerna från Visby och Lödöse med ett urval av limonitiska maler och bergmalmer. En malm från Utö finns med...
bland de senare. De flesta bergmalmer har betydligt högre halter av magnesium, även malmen från Utö, än vad slaggerna har. De limonitiska malmerna sprider över en stor variation i manganinnehållet (även högre än som visas i diagrammet) där de analyserade slaggerna visar låga halter. För fosfor och kalcium (fig. 63) ser vi att slaggerna från Visby uppvisar halter på samma nivå som bergmalmerna vad gäller kalcium, men fosforinnehållet är som regel mycket lågt i bergmalmer (undantag från ett område i Dalarna i diagrammet). Malmen från Utö kan inte korreleras med de analyserade slaggerna med utgångspunkt i deras kemiska sammansättning.

Bland spårämnen kan vi inledningsvis notera att uppgifterna i referenser är färre. Bland dem som finns visar några regioner högre halter av t.ex. vanadin (Halland) dels att andra regioner som Skåne och Småland har malmer med likartad krom- och vanadinhalt som de analyserade slaggerna (fig. 64). För de få bergmalmer som har uppgifter om spårämnen är kromhalten mestadels låg medan vanadininnehållet är av samma storleksordning som i de analyserade slaggerna.

![Diagram](image)

En detalj att ha i åtanke när man jämför spårämnen är att en del av dessa ämnen fördelar sig mellan slagg och järn, en del koncentreras i slaggen medan ytterligare andra företrädesvis hamnar i järnet. Till de senare hör t.ex. kobolt, nickel, krom och vanadin. Det har dock tidigare visat sig (t.ex. utvärdering av GALs databas) att de förekommer i varierande halter även i slagger varför ett högt innehåll av någon av dem visar att ämnet även måste ha funnits i förhållandevis höga halter även i malmen.
Figur 64. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för limonitiska malmer i södra Sverige (se text för referenser), varav några med betydligt högre vanadininnehåll. Endast ett fåtal bergmalmer i referenser har uppgift om dessa ämnen; i dessa fall med låga halter. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring som omfattar de flesta slaggerna från respektive plats. Ett fåtal plotter dock utanför respektive område.

Resultat i jämförelse med reduktionsslagger
En förutsättning för att kunna relatera smidesslagger till ursprungsområde är att de också ärver reduktionsslaggernas kemiska sammansättning. Även om det inte är fråga om identiska absoluta halter bör proportionerna mellan flera specifika ämnen bibehållas under processernas gång. Detta kan studeras med hjälp av kvoter mellan ämnen eller i de diagram vi använt ovan genom att se om ämnen är relaterade till varandra i en grupp av slagger, dvs. om ett ämne ökar bör det relaterade ämnet också öka längs en linje i diagrammet. Slagger med kemisk likhet följer då samma linje, medan andra slagger kan följa en linje med annan lutning. Alternativt kan ett ämne variera medan ett annat är mer eller mindre konstant. Eftersom reduktionsslagger från järnframställning är de som främst har analyserats i många tidigare undersökningar finns här ett betydligt större referensmaterial och det är möjligt att relatera till detta. Som ett urval kan vi fortsätta att jämföra samma ämnen som vi redan har
belyst, dvs. mangan, magnesium, fosfor, kalcium, vanadin och krom. En kort studie av sällsynta jordartsmetaller kommer också att visas.

Det finns en stor mängd reduktionsslager analyserade och även om det är fördelaktigt med stora datamängder kan det ibland vara svårt att urskilja något i en stor mängd. Vi har valt slagger från stora delar av södra Sverige som jämförelse, oavsett om de är från rätt tidsperiod eller ej (se diskussion ovan) och delat in dem efter landskap. En sådan administrativ inledning är möjlichen inte den mest optimala indelningen, men utgör ett bra redskap för att komma vidare i tolkningen.

Exemplet mangan och magnesium

För att ytterligare kunna urskilja om det finns karaktäristiska drag för slagger från olika regioner beskär vi axlarna ytterligare och studerar ett mindre antal landskap i taget. Ett område som har föreslagits som
produktionsområde (se inledningstexten) är Småland. I figurerna 67–71 framgår att det finns skillnader mellan olika områden i Småland, där gränstrakterna med Skåne och Halland inte överensstämmer med slaggerna från Visby eller Lödöse, medan slager från området söder om Kalmar visar mer likheter. I figurtexterna (fig. 67–71) beskrivs utförligare på vilket sätt slager från de olika landskapen skiljer sig från, eller har likheter med, de nu analyserade slaggerna från Visby och Lödöse.

![Diagram](image.png)

Exemplet fosfor och kalcium
På motsvarande sätt som vi har jämfört mangan och magnesium, kan vi studera förhållandet mellan fosfor och kalcium. En första översikt (fig. 72) visar att slaggerna från Visby har ett högt kalciuminnehåll i kombination med lägt fosforinnehåll. Liknande halter förekommer inte mer än i några få reduktionsslagger från järnmaställning i det aktuella referensmaterialet. En möjlig förklaring till detta är att smidesslaggerna i Visby inte direkt kan knytas till reduktionsslagger från blästugnar, utan bör relateras till andra processer, och/eller att kalcium har tillsatts under processens gång. Slaggerna från Lödöse däremot, har innehåll av kalcium i förhållande till fosfor som förekommer i en stor mängd slaggar från flera regioner. I figurtexterna (fig. 73–77) finns mer detaljer kring skillnader och likheter mellan de nu analyserade slaggerna och referensmaterialet.

Figur 74. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slagger från Skåne. Slagger från två lokaler (Ö. Spång och Bredabäck) i gränstrakten mot Halland och Småland är markerade med dubbel symbol. Dessa uppvisar liknande sammansättningsintervall som slaggerna från Lödöse. Flertalet av de övriga har tydligt högre fosforinnehåll, även slagger från östra Skåne (Bromölla; ring).

Figur 76. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slagger från Östergötland och Närke. En del av slaggerna från båda landskapen uppvisar liknande variation som slaggerna från Lödöse, samtidigt som grupp från Närke avviker med betydligt högre fosforinnehåll.
Exemplet krom och vanadin
Tidigare har vi också jämfört spårämnena krom och vanadin, med förbehållet att dessa ämnen går in även i det tillverkade metalliska järnet. Som berörts ovan förekommer det dock slagger med tämligen höga vanadinhaltar – flera hundra mg/kg – varför förekommer är slående även i slagger. I figur 78 ser vi exempel på det från Småland, främst Markarydsområdet, men även närliggande områden i Skåne samt från Halland. En stor andel slagger har dock betydligt lägre vanadininhåll, av samma storleksordning som slaggerna från Visby och Lödöse, och många har en liknande variation i krominhåll. Ett fåtal slagger från Östergötland uppvisar dock ett betydligt högre krominhåll.

I figurtexterna (fig. 79–83) återges jämförelserna med slagger från de olika landskapen mer detaljerat. Jämförelsematerialet är något reducerat eftersom en del äldre analyser inte har inkluderat dessa ämnen.
Figur 78. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V).
Data från figur 61 samt referensdata för reduktionsslager huvudsakligen från sydligaste Sverige, men även exempel från Dalarna och Gästrikland. Diagrammet visar att många slagger är koncentrerade kring halter under 100 mg/kg krom och under 400 mg/kg vanadin. Ett fåtal slagger från Östergötland har högre krominnehåll. Från Småland, Skåne och Halland finns ett antal slagger med betydligt högre vanadininnehåll. Många av dessa kommer från närliggande platser i gränstraktarna mellan landskapen. Den nu analyserade reduktionsslagen från Gotland har också tämligen högt innehåll av vanadin. I följande diagram visas slagger från ett eller ett fåtal landskap åt gången för att lättare kunna urskilja eventuella skillnader och likheter.

Figur 84. Jämförelse av slaggernas innehåll av de sällsynta jordartsmetallerna lantan och cerium. Slaggerna visar en förväntad ökad ceriumhalt för ökad lantanhalt, men förhållandena är inte identiska för alla slagger. Två linjer har dragits schematiskt i diagrammet för att visa att det finns olika, minst två, proportioner mellan de båda ämnena som innehår olika ursprung.

Exemplet sällsynta jordartsmetaller
Andra ämnen som förekommer i slaggerna är de sällsynta jordartsmetallerna (lantan (La) till lutetium (Lu)). De förekommer i låga halter och har, sannolikt, ingen effekt på processen eller järnet, men är användbara ur ett annat perspektiv. De sällsynta jordartsmetallerna följer varandra som grupp och har därmed förväntad inbördes positiv korrelation, och är knutna till olika geologiska miljöer. Några ämnen kan dock vara anrikade, eller urlakade, i förhållande till de andra. Detta gäller bland annat cerium (Ce) som då sägs visa en positiv eller negativ anomali jämfört med övriga. Likaså kan relationen mellan gruppen av tyngre (med högre atomnummer, Ga-Lu, HREE) respektive lättare jordartsmetaller (med lägre atomnummer, La-Sm, LREE) spegla skillnader i anriking och urlakning i bildningsmiljö. Dessa proportioner förväntas också årvas av slaggerna i järnframställningsprocessen. Smidesslagger som är uppbryggda av slagg från tidigare processled kan därmed förväntas ha samma proportioner. Om metalliskt järn har bidragit till slaggernas sammansättning kan det sänka det totala innehållet av sällsynta
 Jordartsmetaller eftersom metallen är fattigare på dessa ämnen. Om tillsättning av t.ex. sand har använts kan detta också späda ut den absoluta halten av de sällsynta jordartsmetallerna, men denna effekt har vi ovan ansett vara marginell. Därför bedömer vi det som rimligt att försöka använda även de sällsynta jordartsmetallerna som ett hjälpmedel.

Om vi inledningsvis jämför två av de lätta sällsynta jordartsmetallerna med varandra, cerium och lantan, ser vi att slaggerna visar en förväntad ökad ceriumhalt för ökad lantanhalt, men att förhållandena inte är identiska (fig. 84). Med hjälp av två linjer kan vi anta att det finns flera olika, minst två, proportioner mellan de båda ämnen. Om vi jämför resultaten med de reduktionsslagger vi tidigare har studerat ser vi till att börja med att de absoluta halterna av både cerium och lantan är låga eller mycket låga jämfört med många av slaggerna i referensmaterialet (fig. 85). Dessutom finns flera proportioner mellan de båda ämnen, som även här kan illustreras med två schematiskt dragna linjer. Om vi studerar ett utsnitt av diagrammet med ett urval av slagger (fig. 86) kan vi se att slagger från Östergötland och Småland följer båda linjerna. Slagger från Halland och Västergötland förefaller väsentligen följa linjen med flackast lutning, den linje som också merparten av slaggerna från Visby och Lödöse följer.

Figur 85. Jämförelse av slaggernas innehåll av de sällsynta jordartsmetallerna lantan och cerium. Slagger från Visby och Lödöse har låga eller mycket låga absoluta halter av både cerium och lantan jämfört med många av slaggerna i referensmaterialet.
Figur 86. Detalj ur föregående figur med ett urval av slagger för jämförelse, utan de aktuella slaggerna från Visby och Lödöse. Liksom i figur 84 visar två schematiska linjer skillnader i proportioner mellan cerium och lantan. Slagger från Småland och Östergötland finns längs båda linjerna medan slagge från Västergötland mestadels följer linjen med flackast lutning.

Skillnaderna mellan linjerna kan beskrivas i en annan typ av diagram (fig. 87–88) där samtliga sällsynta jordartsmetaller plottas. På konventionellt sätt har de absoluta halterna normalisats mot ett referensprov. Till vänster i diagrammet, som ämne nummer två förekommer cerium (Ce; nr 58) som kan följa linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, eller visa en topp (positiv anomali) eller nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali. Det senare gäller för alla slagger. För cerium ser vi dock skillnader mellan slaggerna där några har en positiv anomali av olika grad, andra nästan ingen anomali alls och ett fåtal en svag negativ anomali. Det innebär att det inte är möjligt med en och samma leverantör
av järnet utan flera är nödvändiga. I detalj (fig. 88) ser vi att positiv anomali förekommer i slagger från både Visby och Lödöse.

Slagger med positiv anomali i detta diagram motsvarar de med brantast lutning i figurer 84–86. Den variation i huvudämnen och spårämnen som vi tidigare har noterat gäller för de båda städerna, framträder följaktligen även i de sällsynta jordartsmetallerna. Ett resultat som ger stöd till tolkningen om att det finns flera produktionsområden som har levererat järnet som smiddes vidare.

Figur 87. Sällsynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slagger följer linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är európtium (Eu; nr 63) som visar en negativ anomali för alla slagger.
Samlfattning och utvärdering av de kemiska analyserna
Med hjälp av de ovanstående diagrammen och jämförelserna med olika områden kan vi göra några sammanfattande utvärderingar där en del områden uppvisar konsekvent likhet eller skillnad med utgångspunkt i de jämförda ämnena. Andra områden ger en mindre tydlig bild där några ämnen visar stor likhet, medan andra visar att ett järnproduktionsområde som vid en första anblick förefaller rimligt, är mindre troligt med utgångspunkt i andra ämnen.

Om vi lägger till resultaten av jämförelsen av spårämnesinnehållet kan vi notera att de slagger från gränsområdet mellan Småland, Skåne och Halland som har avvikande innehåll vad gäller huvudämnen mangan, magnesium och fosfor också tydligt skiljer sig från slaggerna från Visby och Lödöse vad gäller innehållet av spårämnen, framförallt vanadin. För mangan, magnesium och fosfor var detta tydligt för slaggerna främst på skånska och småländska sidan om gränsen, från tidig medeltid och framåt, medan de halländska visar mer överensstämmelse i fråga om dessa ämnen. När även spårämnen är inkluderade i jämförelsen ser vi att även dessa skiljer sig från Visbys och Lödöses slagger. Här ska vi dock ha i åtanke att det finns slagger från Halland som inte har analyserats med avseende på spårämnesinnehållet på sätt som visar att detta kan behöva undersökas ytterligare.

Slagger från Västergötland som ingår i referensmaterialet är visserligen huvudsakligen äldre eller betydligt äldre än materialet från dem. De undersökta städerna men visar många likheter i fråga om kemisk
sammansättning. Med tanke på att det också finns järnframställning av yngre datum vore det intressant att analysera slagger även från denna produktion för att se om det finns motsvarande överensstämmelser där. Däremot finns det inte korrelation med slagger från en tidig masugn i Hyttehamn längs Vätterns västra strand.

Vi har också jämfört med slagger från Närke och Östergötland som avviker i större omfattning från slaggerna från Lödöse och Visby. Det finns variationer i slaggmaterialet från båda dessa landskap och variationerna är till viss del mycket lokala. Bland annat finns det slagger från samma socken i Närke som skiljer sig markant åt vad gäller innehåll av såväl huvudämnen som spårämnen. Även om ett fåtal slagar från dessa landskap visar likheter med slaggerna från Visby och Lödöse (ett fåtal) så förefaller området vara mindre intressant som ursprungsområde.

Tolkning och diskussion

Undersökningen och analyserna av slaggerna från smidet i Visby och Lödöse har visat en del förväntade resultat men också en del oväntade observationer som har inneburit alternativa tolkningsmöjligheter och förslag till detaljer i järnhantverkets processer som inte vanligen omtalas.

Inledningsvis planerade vi att välja slagger för analys som var lämpliga för att spåra ursprunget på järnet, såväl var det framställts, ur vilken typ av malm, och med vilken process. Med utgångspunkt i tidigare publikationer kring slagger i de båda städerna och annat tillgängligt dokumentationsmaterial gjordes en prioritering också för att få en god kronologisk täckning inom både Visbys och Lödöses järnsmiden. När urvalet skulle göras visade det sig att en del slaggmaterial inte gick att finna varför en omprioritering fick göras. Vi bedömer dock att de ursprungliga frågeställningarna kring processled och teknik, ursprung och relation till kronologi fortfarande var relevant, men något förändrade jämfört med utgångsplanen. När vi tolkar resultaten är det viktigt att ha urvalsprincipen i åtanke.

Slaggernas morfologi

Från flera kvarter i Visby har vi analyserat slagger av formmässigt två huvudtyper. Den ena är de så karaktäristiska plankonvexa slidesslaggerna. En del är visserligen inte helt plana på överytan utan är något konkava eller konvexa, men är ändå av samma typ. Den andra typen av slagg är oregelbundna strängflutna slagger där flera tunna slaggflöden överlagrar varandra. Detta utseende ser vi främst inom järfarmställningen, antingen som de karaktäristiska steariformade...
slaggen som samlas i blästugnarnas slaggropar, rakt underuppen, eller de slaggen som tappas ut ur ugnen under järnframställningen. För dessa var det viktigt att avgöra vilket processled de kommer från. Som referens till Visbys slaggen analyseras också en slagg från järnframställning under järnålder. Denna slagg kommer från Stenkumla socken på Gotland.

Från Lödöse gjorde vi ett urval som i princip endast omfattade de karaktäristiska skållorna. Det är dock viktigt att påpeka att andra slagtyper saknades i materialet i museets magasin. Övrigt material omfattade främst järnrika klumpar och smält keramiskt material, dvs. inget av det är slaggen. Om det bevarade materialet i museets magasin är representativt för vad som har funnits eller om de karaktäristiska skållorna prioriterades vid de arkeologiska undersökningarna är inte känt. Skållor av olika storlekar förekommer, möjligen relaterat till olika delområden i staden men denna fråga har inte utretts specifikt i denna undersökning. Det finns dock slaggen från Lödöse som är större än de vi har analyserat från Visby. Den största i Lödöse är ca 210 mm i diameter och 60 mm tjock, men flera kring 100–130 mm i diameter förekommer också. De största från Visby är ca 120 mm, i något fall 155 mm i diameter.

I dokumentation kring slaggen i Lödöse nämns flera termer som leder tankarna till järnframställning; t.ex. bottensmältor, myrmalmstackor, gropugnar och ”lerugnar för järnutvinning”. Det finns dock inget bevarat material i magasinen som tyder på att det rör sig om järnframställning.

Processled – primärsmed

Bland de slaggen som har analyserats mer detaljerat gör vi tolkningen att de kommer från primärsmed, ett smide där slagtförande järnluppar från blästugnar har rensats på slagg. Rensningen har inneburit en ursmältning av slagg som blivit inneslutet i metallen under framställningsprocessen. Sammansättningssättet liknar denna slagg därför reduktionsslaggen varför de uppställda frågeställningarna kring att söka ursprung bedöms vara rimliga att gå vidare med.

Flera av de analyserade skållorna är tämligen homogena uppbyggda, med en sammansättning lik reduktionsslaggen. Några av dem uppvisar dock detaljer som indikerar smide, t.ex. olivinkristaller med olika sammansättningar i kärnan och ytterkanten vilket upptar när temperaturen varierar. Andra har skikt av järnoxid och magnetit, såsom bildas istället för wüstit när tillgången på syre är större, vilket den är i en smideshärd jämfört med i en blästugn.

Ett fåtal slaggen skulle möjlig kuna vara rester efter sekundärsmed, där ämnesjärn eller föremål smids. En av dem, nr 136 från område MH i Lödöse är rik på järnoxider som skulle ha kunnat bildas vid oxidering av metall. Slaggen innehåller också komponenter som är tydliga för sekundärsmedet i form av glödskal. Dessa är dock främst fastkittade i slaggenas yttre delar – men visar att processen har ägt rum.

Möjligen ska vi inte förvänta oss några större slaggmängder från sekundärsmedet i detta sammanhang. Den tolkningen kan diskuteras.
utifrån förloppet under primärsmidet. Troligen har tämligen stora järnluppar, inte klarlagt vilken form, renats på slagg. Rensningen har sannolikt varit så omfattande att den resulterat i ett tämligen slagfritt järn, som, när det i sin tur ska formas till föremål, inte genererar så stora mängder slagg.

Process – detaljer (slaggavrinning)

Anledningen till att man valt en teknik för att tappa slagg från smideshärden kan mycket väl vara densamma som i blästugnen, dvs. att man velat fortsätta smidet utan att behöva avbryta processen för att rensa härdens på slagg, möjlig för att man har arbetat med tämligen stora luppar.

Koppar och brons i slaggarna
I flera slagger, såväl från Visby som från Lödöse, kunde vi observera förekomst av koppar, eller kopparlegering i större eller mindre omfattning. Koppardroppar är inte det första man förväntar sig i en smideslagg, snarare är det metalliskt järn som kan förekomma. Koppar visade sig förekomma i några olika varianter. I något fall observerade vi förekomst av såväl järn- som koppardroppar (varje metall separat, t.ex. i nr 307 från Schweitzergränd). I andra fanns enbart droppar av koppar (Nr 507 från Kaplanen 8), ytterligare andra innehöll komplexa droppar med både järn och koppar (Nr 2315 från Priorn 11). Fenomenet visade sig vara tämligen frekvent och förekommer i slagger från flera kvarter/delområden (fig. 1). Även tidigare analyser av slagger från Visby
har noterat liknande förekomster (Kresten 1995) av koppar från flera kvarter men också brons (från Priorn 4).

För att utreda dropparnas sammansättning mer exakt analyserades ett fåtal. Från Visby noterades förekomst av koppar med innehåll av järn (få procent) liksom järn med innehåll av koppar. Kopparens sammansättning är i storleksordningen densamma som råkoppar har, dvs. innan kopparen har garats för att renas en sista gång.

I slagerna från Lödöse är det, enligt de detaljerade analyserna av två av dem, brons med tennhalt på ca 6 respektive 10 procent som förekommer. Möjligen finns andra sammansättningar bland dem som inte har analyserats.

Det tidigare omnämnda smidet vid Lundströms Plats i Jönköping uppväckte också förekomst av koppardroppar i slaggen (Grandin 2009). Även från Sigtuna har koppar, med liknande järninnehåll, samt brons noterats i smidesskållor från medeltid (Hjärthner-Holdar & Larsson 1997).

Den stora frågan är naturligtvis varför det finns kopparslag och brons i smidesslaggerna. Frågan blir extra tydlig med tanke på att slagorna bedöms komma från primärmålet. Om det rör sig om sekundärsmidesslagger skulle den komplexa metallförekomsten kunna bero på ett komplext metallhanterande, där koppar eller kopparlegeringar har använts för dekoration av järnmaterial. Andra exempel på användning av kopparlegeringar är bland annat lantbruket och hantverk och brons med järninnehåll som förvandlas till en konstnärlig form. Dessa möjligheter diskuteras i andra avhandlingar.

I blästjärnstillverkningen är det främst sjö- och myrmalmer som har använts och dessa är mestadels mycket låga vad gäller kopparhalt. Blästjärnen har dock inte prioriterats i järnframställningen, vilket kan förklaras med flera anledningar. Teoretiskt skulle vi kunna tänka oss att kopparförekomsten i slaggen har sitt ursprung i malm, men i de fall det förekommer brons i slaggen är detta inte något alternativ. I kopparmalmerna finns visserligen flera spårämnen som kan observeras i analyserna (t.ex. antimon), men tenn ska vi inte förvänta oss. Förekomsten av bronsdroppar i slaggerna kan därmed inte förklaras med kopparförekomst i den använda järnmalmen.

Kan vi istället tänka oss tillsättning av koppar/brons vid något skede av processen? Och i så fall av vilken anledning? Vid
järnframställningsexperimenten vid Nya Lapphyttan i Norberg har man som rutin att tillsätta koppar i små mängder, något eller några tiotals gram, i forman när man observerar att slaggen börjar “frysa”. När koppar har tillsatts flyter slaggen lättare och separeras bättre från metall. Är det samma fenomen som har skett i smidet, inte bara i Visby och Lüdöse, utan även på andra platser? Med tanke på att slaggen, speciellt i Visby, har runnit lätt och det förefaller som om smideshärden har tappats på slagg har det varit viktigt att kunna kontrollera slaggens flytbarhet. Om lupporna har varit stora och för att slaggrenningen ska fortgå har möjligen tillsättning av koppar i forman underlättat denna process. I samband med experiment in Nya Lapphyttan är det endast små mängder som används, men det fär stor effekt. I Visby ser vi mestadels mikroskopiska droppar. Totalhalten koppar är inte känt i just dessa slaggen men i tidigare analyserade smidesslaggen med observerad koppar varierar det totala kopparinnehållet från 0,03 till 0,08 % CuO, (Kresten 1995). Om denna tolkning är rimlig förefaller det inte ha spelat så stor roll vilket tydlikoppar som har använts utan det är snarare tillgängen på material som har styr. I Visby har det funnits råkoppar såväl som brons. I Lüdöse, med sitt omfattande kopparlegeringsarbete, har det knappast varit brist på brons.

Ursprunget

De analyserade slaggerna från Visby och Lüdöse är samtliga tämligen rena i sin sammansättning, dvs. de har låga halter av många spårämnen. På så sätt är det möjligt att utesluta de områden som har högre halter av dessa ämnen som möjliga leverantörer. Intressant nog uppvisar slaggerna från de båda städerna likartad variation i sin sammansättning, även om enstaka undantag finns.

I jämförelserna och diskussionerna i analyskapitlet ovan har vi huvudsakligen betraktat Lüdöse och Visby som en grupp eftersom det finns variationer i de båda städernas slaggen som delvis täcker samma intervall. Det finns dock en del som också skiljer dem åt, t.ex. kalkiuminnehållet som är markant högre i slaggerna från Visby. Ett annat ämne som skiljer de båda städernas slaggen från varandra är krom, med något högre halt i Visbys slaggen. Genomgående finns det dock slaggen från Lüdöse som visar stora likheter med gruppen av slaggen från Visby och tvärtom. Detta resultat tyder på att det inte finns enbart en leverantör av järn till respektive ort. Möjligen kan vi se dominans från ett område till Lüdöse respektive Visby, samtidigt som andra sammansättningar tyder på att det funnits tillgång även till annat material. De skillnader om föreligger ger en starkare koppling mellan slaggen från Västergötland samt Jönköpingsområdet och Lüdöse. Skånska och smålandska slaggen i övrigt som uppvisar likheter med de nu analyserade slaggerna, gör det

Områden som dock inte är rimliga produktionsområden är gränstrakterna mellan Skåne, Småland och Halland där det finns dokumenterad och välundersökt järn framställning från tidig medeltid och framåt och av kronologiska skäl skulle kunna vara tänkbart. Järn framställningsområden i Östergötland och Närke, med medeltida blästjärnsproduktion i det senare, förefaller inte heller vara rimliga järn leverantörer till vare sig Visby eller Lödöse.

Till sist är det viktigt att komma ihåg att referens materialet är begränsat. Dels är det avgränsat till järn framställningsområden inom dagens Sverige, dels är det beroende av vilka områden som är undersökta och i vilken mån som analyser har gjorts. Betydligt fler områden är kända, men inte undersökta på samma detaljnivå. Det innebär att även om det finns möjliga områden som har koppling till Lödöse och/eller Visby i det använda referens materialet finns det möjlighet att det rör sig om andra produktionsområden, med idag okända sammansättningar på malm och slagger, som har levererat järn till de båda städerna.

Smidet i Visby och Lödöse i sammanfattning

- Slaggerna representerar huvudsakligen primärsmide, där luppar har rensats på slagg
- Järnet är ursprungligen blästjärn, från sjö-/myrmalm (mindre troligt bergmalm)
- Lupparna kan ha varit stora och smideshärden konstruerad för slaggtapning
- Koppar/brons har tillsatts som en del i processen för att underlätta saggens flytbarhet för att separera den från järnet.
- Den järnframställning som omnämns i handlingar, främst i Lödöse, finns ej belägg för i slagg materialet
- Det finns inga belägg för att malm från Utö har använts för järnframställningen som ligger till grund för smidet i Visby
- Järnet har kommit till de båda städerna från flera leverantörer
Tabell 5. Totalkemisk analys av slagger från Visby och en från Gotland i övrigt (TM16858). Den första
delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar
halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319
och L1119320. Allt järn är ursprungligen återgivet som Fe2O3 men även omräknat till FeO i slutet av
huvudtabellen efter justering för glödförlust.
Prov

P 2315

P 2478

K 507

Sch 307

A 54

Sm 142

Sm 485

St T C5819

TM16858

SiO2

34,0

23,3

32,6

15,9

27,4

21,4

9,86

32,1

29,3

TiO2

0,118

0,0938

0,175

0,0570

0,0967

0,0535

0,136

0,183

0,0971

Al2O3

3,40

2,86

3,62

1,65

2,44

2,06

3,20

4,04

3,54

Fe2O3

61,3

74,4

25,1

85,1

69,3

81,1

87,3

59,6

67,2

MnO

0,135

0,710

0,313

0,0787

0,273

0,310

0,707

0,186

2,98

MgO

0,474

0,530

1,58

0,268

0,711

0,286

0,515

0,500

0,341

CaO

6,02

4,89

23,0

1,47

6,24

2,22

3,55

7,33

2,93

Na2O

0,548

0,427

0,958

0,152

0,472

0,299

0,191

0,594

0,396

K 2O

1,29

1,13

1,82

0,276

1,11

0,638

0,518

1,38

0,861

P2O5

0,186

0,399

10,7

0,305

0,387

0,249

0,436

0,453

0,151

Glödförlust

-5,40

-6,70

-3,10

-4,10

-6,30

-7,90

-5,80

-4,70

-6,40

Summa

102

102

96,8

101

102

101

101

102

101

FeO

50,3

60,9

19,8

72,9

56,7

65,9

73,4

49,4

54,7

Be

3,37

4,58

1,66

2,77

2,68

3,41

5,75

2,72

5,82

Sc

2,70

<1

6,50

<1

3,21

<1

4,40

<1

10,6

V

77,7

107

60,1

37,9

58,6

80,7

289

46,1

514

Cr

45,8

75,0

104

19,1

57,8

97,2

76,4

53,8

64,7

Co

10,8

13,6

20,2

22,1

19,6

31,2

12,7

38,2

<6

Ni

20,4

18,4

47,3

16,5

16,9

26,4

12,5

46,4

26,2

Ga

5,05

4,86

4,96

5,22

5,51

4,43

4,04

7,87

3,00

Rb

31,9

22,5

41,1

7,82

22,3

17,4

15,3

31,5

27,0

Sr

68,5

85,1

294

24,3

83,7

51,6

99,9

107

78,7

Y

14,4

13,4

12,3

6,40

8,00

8,42

23,9

14,4

181

Zr

72,9

64,4

115

36,4

77,3

31,9

56,0

115

168

Nb

<6

<6

14,2

<6

<6

<6

<6

<6

<6

Mo

<6

<6

12,5

<6

<6

7,41

6,88

<6

<6

Ba

187

338

434

75,5

178

141

277

220

1900

La

26,9

16,7

14,0

5,93

8,84

9,42

31,2

13,2

167

Ce

55,1

66,0

35,0

13,8

24,7

36,7

91,5

31,6

273

Pr

7,56

4,71

3,48

1,24

2,06

2,34

9,96

3,07

39,0

Nd

26,6

16,8

12,4

4,37

7,13

8,12

36,8

11,1

146

Sm

4,81

3,27

2,34

0,856

1,46

1,54

7,15

2,27

30,3

Eu

0,686

0,443

0,452

0,202

0,293

0,241

1,24

0,531

6,35

Gd

3,85

2,78

2,30

0,871

1,30

1,34

5,78

2,19

32,4

Tb

0,567

0,418

0,359

0,145

0,210

0,209

0,897

0,356

4,94

Dy

2,83

2,26

1,88

0,823

1,13

1,09

4,75

1,90

26,5

Ho

0,591

0,488

0,430

0,190

0,249

0,231

1,06

0,417

5,77

Er

1,58

1,28

1,17

0,471

0,710

0,651

2,98

1,15

14,7

Tm

0,229

0,218

0,171

<0.1

<0.1

<0.1

0,459

0,161

2,01

Yb

1,26

1,22

1,06

0,439

0,677

0,577

2,88

1,01

11,9

Lu

0,202

0,203

0,171

0,0658

0,107

0,0942

0,818

0,154

1,85

Hf

1,85

1,60

2,68

0,835

1,69

0,766

1,46

2,69

4,01

Ta

0,358

0,263

0,481

0,145

0,258

0,185

0,356

0,461

0,346

W

<60

<60

<60

<60

<60

<60

<60

<60

<60

Th

4,70

4,72

4,02

1,42

2,48

2,28

12,6

3,91

8,40

U

1,96

2,65

1,17

0,383

0,744

1,49

5,65

0,880

4,03

Järnsmide i Visby och Lödöse 93


Tabell 5. Total kemisk analys av slagger från Lödöse. Den första delen av tabellen presenterar halter av huvudlementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligen återgivet som Fe$_2$O$_3$ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.

<table>
<thead>
<tr>
<th>Prov</th>
<th>MK169</th>
<th>MK320</th>
<th>MH136</th>
<th>MG283a</th>
<th>MM572e</th>
<th>ME2_1</th>
<th>MC16</th>
<th>MC18</th>
<th>MC19_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>17,7</td>
<td>16,1</td>
<td>6,01</td>
<td>24,0</td>
<td>19,4</td>
<td>27,0</td>
<td>26,8</td>
<td>12,1</td>
<td>8,19</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,140</td>
<td>0,102</td>
<td>0,0459</td>
<td>0,139</td>
<td>0,118</td>
<td>0,172</td>
<td>0,134</td>
<td>0,0846</td>
<td>0,0698</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>3,55</td>
<td>3,39</td>
<td>1,47</td>
<td>4,12</td>
<td>3,31</td>
<td>4,57</td>
<td>2,83</td>
<td>2,02</td>
<td>1,39</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>78,1</td>
<td>83,3</td>
<td>95,5</td>
<td>72,1</td>
<td>76,7</td>
<td>64,1</td>
<td>69,5</td>
<td>87,3</td>
<td>93,2</td>
</tr>
<tr>
<td>MnO</td>
<td>0,857</td>
<td>0,360</td>
<td>0,158</td>
<td>0,216</td>
<td>0,158</td>
<td>0,240</td>
<td>0,473</td>
<td>0,181</td>
<td>0,119</td>
</tr>
<tr>
<td>MgO</td>
<td>0,852</td>
<td>0,603</td>
<td>0,576</td>
<td>0,690</td>
<td>0,584</td>
<td>0,955</td>
<td>0,583</td>
<td>0,789</td>
<td>0,367</td>
</tr>
<tr>
<td>CaO</td>
<td>1,96</td>
<td>1,57</td>
<td>0,873</td>
<td>2,79</td>
<td>1,10</td>
<td>3,19</td>
<td>2,25</td>
<td>1,23</td>
<td>0,760</td>
</tr>
<tr>
<td>FeO</td>
<td>64,5</td>
<td>68,7</td>
<td>80,3</td>
<td>60,5</td>
<td>66,5</td>
<td>53,8</td>
<td>57,2</td>
<td>72,5</td>
<td>79,2</td>
</tr>
<tr>
<td>Be</td>
<td>3,63</td>
<td>6,56</td>
<td>3,75</td>
<td>3,09</td>
<td>2,87</td>
<td>2,70</td>
<td>2,98</td>
<td>3,52</td>
<td>3,76</td>
</tr>
<tr>
<td>Sc</td>
<td>2,09</td>
<td>13,1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>V</td>
<td>78,7</td>
<td>179</td>
<td>48,7</td>
<td>43,5</td>
<td>57,9</td>
<td>46,1</td>
<td>66,3</td>
<td>50,3</td>
<td>55,4</td>
</tr>
<tr>
<td>Cr</td>
<td>37,4</td>
<td>38,1</td>
<td>28,0</td>
<td>32,5</td>
<td>76,7</td>
<td>26,4</td>
<td>25,3</td>
<td>19,2</td>
<td>26,3</td>
</tr>
<tr>
<td>Co</td>
<td>61,5</td>
<td><6</td>
<td>61,6</td>
<td>24,1</td>
<td>31,5</td>
<td>38,8</td>
<td>89,0</td>
<td>11,2</td>
<td>44,5</td>
</tr>
<tr>
<td>Ni</td>
<td>19,0</td>
<td><10</td>
<td>39,7</td>
<td>14,4</td>
<td>35,1</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>18,2</td>
</tr>
<tr>
<td>Ga</td>
<td>5,38</td>
<td>3,20</td>
<td>3,14</td>
<td>5,82</td>
<td>12,3</td>
<td>5,49</td>
<td>6,89</td>
<td>16,6</td>
<td>4,88</td>
</tr>
<tr>
<td>Rb</td>
<td>46,6</td>
<td>46,3</td>
<td>21,1</td>
<td>92,1</td>
<td>29,1</td>
<td>77,0</td>
<td>71,4</td>
<td>26,1</td>
<td>22,9</td>
</tr>
<tr>
<td>Sr</td>
<td>169</td>
<td>147</td>
<td>136</td>
<td>213</td>
<td>99,6</td>
<td>265</td>
<td>183</td>
<td>141</td>
<td>55,0</td>
</tr>
<tr>
<td>Y</td>
<td>16,6</td>
<td>152</td>
<td>6,52</td>
<td>14,2</td>
<td>10,9</td>
<td>11,6</td>
<td>8,83</td>
<td>6,12</td>
<td>7,08</td>
</tr>
<tr>
<td>Zr</td>
<td>84,6</td>
<td>105</td>
<td>22,1</td>
<td>97,4</td>
<td>72,4</td>
<td>114</td>
<td>82,0</td>
<td>49,3</td>
<td>49,0</td>
</tr>
<tr>
<td>Nb</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>Mo</td>
<td><6</td>
<td>25,6</td>
<td>26,6</td>
<td><6</td>
<td><6</td>
<td>8,08</td>
<td>11,1</td>
<td><6</td>
<td>15,2</td>
</tr>
<tr>
<td>Ba</td>
<td>501</td>
<td>440</td>
<td>292</td>
<td>538</td>
<td>241</td>
<td>605</td>
<td>526</td>
<td>222</td>
<td>204</td>
</tr>
<tr>
<td>La</td>
<td>18,9</td>
<td>213</td>
<td>5,87</td>
<td>13,0</td>
<td>8,48</td>
<td>11,3</td>
<td>13,1</td>
<td>5,74</td>
<td>6,92</td>
</tr>
<tr>
<td>Ce</td>
<td>66,1</td>
<td>441</td>
<td>19,8</td>
<td>32,4</td>
<td>22,4</td>
<td>27,9</td>
<td>49,5</td>
<td>13,8</td>
<td>19,6</td>
</tr>
<tr>
<td>Pr</td>
<td>5,50</td>
<td>56,2</td>
<td>1,40</td>
<td>3,28</td>
<td>2,01</td>
<td>2,71</td>
<td>3,71</td>
<td><1</td>
<td>1,77</td>
</tr>
<tr>
<td>Nd</td>
<td>19,6</td>
<td>199</td>
<td>5,02</td>
<td>11,5</td>
<td>6,99</td>
<td>9,78</td>
<td>12,9</td>
<td>3,94</td>
<td>6,22</td>
</tr>
<tr>
<td>Sm</td>
<td>3,94</td>
<td>34,1</td>
<td>0,955</td>
<td>2,30</td>
<td>1,38</td>
<td>1,99</td>
<td>2,44</td>
<td>0,82</td>
<td>1,23</td>
</tr>
<tr>
<td>Eu</td>
<td>0,605</td>
<td>5,11</td>
<td>0,139</td>
<td>0,402</td>
<td>0,274</td>
<td>0,380</td>
<td>0,356</td>
<td>0,152</td>
<td>0,149</td>
</tr>
<tr>
<td>Gd</td>
<td>3,38</td>
<td>30,9</td>
<td>0,861</td>
<td>2,16</td>
<td>1,38</td>
<td>1,91</td>
<td>2,02</td>
<td>0,756</td>
<td>1,05</td>
</tr>
<tr>
<td>Tb</td>
<td>0,527</td>
<td>4,53</td>
<td>0,127</td>
<td>0,356</td>
<td>0,220</td>
<td>0,309</td>
<td>0,298</td>
<td>0,116</td>
<td>0,175</td>
</tr>
<tr>
<td>Dy</td>
<td>2,91</td>
<td>23,6</td>
<td>0,669</td>
<td>2,07</td>
<td>1,27</td>
<td>1,85</td>
<td>1,74</td>
<td>0,727</td>
<td>0,954</td>
</tr>
<tr>
<td>Ho</td>
<td>0,625</td>
<td>5,30</td>
<td>0,150</td>
<td>0,477</td>
<td>0,309</td>
<td>0,434</td>
<td>0,379</td>
<td>0,162</td>
<td>0,201</td>
</tr>
<tr>
<td>Er</td>
<td>1,83</td>
<td>14,4</td>
<td>0,423</td>
<td>1,33</td>
<td>0,859</td>
<td>1,22</td>
<td>1,03</td>
<td>0,456</td>
<td>0,599</td>
</tr>
<tr>
<td>Tm</td>
<td>0,268</td>
<td>2,08</td>
<td><0,1</td>
<td>0,199</td>
<td>0,126</td>
<td>0,191</td>
<td>0,170</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>Yb</td>
<td>1,77</td>
<td>13,1</td>
<td>0,372</td>
<td>1,29</td>
<td>0,847</td>
<td>1,27</td>
<td>1,03</td>
<td>0,517</td>
<td>0,573</td>
</tr>
<tr>
<td>Lu</td>
<td>0,267</td>
<td>2,32</td>
<td>0,0789</td>
<td>0,218</td>
<td>0,142</td>
<td>0,193</td>
<td>0,160</td>
<td>0,0739</td>
<td>0,0827</td>
</tr>
<tr>
<td>Hf</td>
<td>2,10</td>
<td>2,70</td>
<td>0,593</td>
<td>2,26</td>
<td>1,69</td>
<td>2,71</td>
<td>2,01</td>
<td>1,16</td>
<td>1,20</td>
</tr>
<tr>
<td>Ta</td>
<td>0,400</td>
<td>0,359</td>
<td>0,121</td>
<td>0,486</td>
<td>0,340</td>
<td>0,559</td>
<td>0,436</td>
<td>0,307</td>
<td>0,206</td>
</tr>
<tr>
<td>W</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
</tr>
<tr>
<td>Th</td>
<td>4,15</td>
<td>14,7</td>
<td>1,30</td>
<td>2,95</td>
<td>2,07</td>
<td>3,07</td>
<td>3,45</td>
<td>1,15</td>
<td>1,52</td>
</tr>
<tr>
<td>U</td>
<td>2,09</td>
<td>16,6</td>
<td>0,519</td>
<td>1,23</td>
<td>0,671</td>
<td>1,08</td>
<td>1,14</td>
<td>0,421</td>
<td>0,604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slagg</th>
<th>Ann.</th>
<th>S</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ag</th>
<th>Sn</th>
<th>Sb</th>
<th>Au</th>
<th>Pb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visby</td>
<td></td>
</tr>
<tr>
<td>2315_1</td>
<td>Fe-dom</td>
<td>0</td>
<td>103,565</td>
<td>0,157</td>
<td>0,03</td>
<td>0,161</td>
<td>0,089</td>
<td>0,022</td>
<td>0</td>
<td>0,053</td>
<td>0,065</td>
<td>0</td>
<td>104,142</td>
<td></td>
</tr>
<tr>
<td>2315_2</td>
<td>Cu-dom</td>
<td>0</td>
<td>1,509</td>
<td>0,051</td>
<td>0,08</td>
<td>98,541</td>
<td>0,032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,002</td>
<td>100,215</td>
<td></td>
</tr>
<tr>
<td>507_1</td>
<td>Cu-droppe</td>
<td>0,027</td>
<td>0,288</td>
<td>0,004</td>
<td>0,106</td>
<td>97,421</td>
<td>0,172</td>
<td>0,395</td>
<td>0,033</td>
<td>0,38</td>
<td>0,009</td>
<td>0,217</td>
<td>99,052</td>
<td></td>
</tr>
<tr>
<td>507_2</td>
<td>Tyngre del</td>
<td>0,083</td>
<td>0,693</td>
<td>0,123</td>
<td>0,036</td>
<td>4,109</td>
<td>0</td>
<td>0</td>
<td>1,036</td>
<td>0,067</td>
<td>0,118</td>
<td>0</td>
<td>70,54</td>
<td>76,805</td>
</tr>
<tr>
<td>Lödöse</td>
<td></td>
</tr>
<tr>
<td>ME2_1</td>
<td>Fe-dom del</td>
<td>0,008</td>
<td>99,316</td>
<td>0,232</td>
<td>0,137</td>
<td>3,619</td>
<td>0,021</td>
<td>0,203</td>
<td>0,066</td>
<td>0</td>
<td>0,051</td>
<td>0,076</td>
<td>103,729</td>
<td></td>
</tr>
<tr>
<td>ME2_2</td>
<td>Fe-dom del</td>
<td>0,011</td>
<td>97,645</td>
<td>0,264</td>
<td>0,032</td>
<td>4,526</td>
<td>0</td>
<td>0,112</td>
<td>0,054</td>
<td>0</td>
<td>0</td>
<td>0,282</td>
<td>102,926</td>
<td></td>
</tr>
<tr>
<td>ME2_3</td>
<td>Cu-dom del</td>
<td>0,142</td>
<td>4,119</td>
<td>0,007</td>
<td>0,213</td>
<td>87,172</td>
<td>0</td>
<td>0,172</td>
<td>0</td>
<td>9,799</td>
<td>0</td>
<td>0,065</td>
<td>0</td>
<td>101,689</td>
</tr>
<tr>
<td>ME2_4</td>
<td>Homogen</td>
<td>0,183</td>
<td>2,593</td>
<td>0,041</td>
<td>0,087</td>
<td>87,091</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11,003</td>
<td>0,112</td>
<td>0</td>
<td>0,172</td>
<td>101,282</td>
</tr>
<tr>
<td>ME2_5</td>
<td>Kompl.</td>
<td>0</td>
<td>97,467</td>
<td>0,313</td>
<td>0,084</td>
<td>4,664</td>
<td>0,085</td>
<td>0</td>
<td>0</td>
<td>0,192</td>
<td>0</td>
<td>0,134</td>
<td>0</td>
<td>102,939</td>
</tr>
<tr>
<td>MC4_1</td>
<td>Matrix</td>
<td>0,005</td>
<td>0,854</td>
<td>0,05</td>
<td>0,107</td>
<td>94,73</td>
<td>0</td>
<td>0,085</td>
<td>0,103</td>
<td>4,01</td>
<td>0,466</td>
<td>0</td>
<td>0,126</td>
<td>100,536</td>
</tr>
<tr>
<td>MC4_2</td>
<td>Medel</td>
<td>0,083</td>
<td>26,258</td>
<td>0,103</td>
<td>0,123</td>
<td>68,414</td>
<td>0,021</td>
<td>0,064</td>
<td>0,026</td>
<td>6,251</td>
<td>0,145</td>
<td>0,050</td>
<td>0,075</td>
<td>101,612</td>
</tr>
</tbody>
</table>
Referenser

GAL:s analysdatabas
Administrativa uppgifter

Riksantikvarieämbetets projektnummer: 11786.
Underkonsulter: ALS Scandinavia, MINOPREP, CEMPEG.
Digital dokumentation: förvaras på UV Mitt.
Foton: Lena Grandin och Mia Englund.
Figurer

Figur 2. Priorn 11, smidesskållan Fnr 2315 i tvärsnitt.

Figur 3. Priorn 11, Fnr 2315 i mikroskop. Översikt på homogen slagg som består av olivin (ljus grå) och en mellanliggande glasfas (mörkare grå).

Figur 5. Priorn 11, slaggen Fnr 2478 i tvärsnitt med tydligt urskiljbara slaggsträngar.

Figur 6. Priorn 11, Fnr 2478. Översikt från mikroskopet. Slaggsträngarna urskiljs med hjälp av tunna ljusa band av magnetit och skillnader i kornstorlek (finast närmast kontakterna).

Figur 9. Schweizergränd, Fnr 78, del av en smidesskålla, sedd i profil.

Figur 12. Schweizergränd, Fnr 307 i mikroskop. Översikt på homogen slagg som är relativt grovkornig och innehåller wüstit (ljus), olivin och glas.

Figur 15. Abboten 1, Fnr 54. Översikt från mikroskopet på slagen som domineras av olivin (ljus grå) och en glasfas (mörkare grå). Wüstit förekommer i mindre mängd (tunna ljusa formationer).

Figur 16. Abboten 1, Fnr 54. Detalj från mikroskopet som visar att olivinkristallerna är zonerade, dvs., deras yttersta kant (mörkare grå; se pil) har en avvikande sammansättning.

Figur 18. Smedjan 7, Fnr 142 i delat tvärspott där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas.

Figur 19. Smedjan 7, Fnr 142. Detalj från mikroskopet, där kontakten mellan slaggflöden syncs med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.

Figur 21. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slagg i den övre delen som innehåller långsamma olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan (se nästa figur).

Figur 22. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slagg som i den nedre halvan domineras av wüstit som är tamligen grovkornig.

Figur 24. Stora Torget C5819:15, WII:12 i delat tvärspott som visar att slaggens är skiktvis uppbyggd.

Figur 25. Stora Torget C5819:15, WII:12. Översikt från mikroskopet som visar att slaggens består av olivin (ljusare grå) och en glasfas (mörkare) men att det finns skillnader i kornstorlek med grövre korn i den nedre delen.

Figur 27. TM 16858. Slagg från Stenkumla sn. Två mindre stycken av ursprungligen större slagg med många pålagrade slaggsträngar från en reductionslagg.

Figur 28. TM 16858 från Stenkumla sn. Översikt från mikroskopet som visar tre olika slaggflöden med tydliga kontakter (se även nästa figur).

Figur 30. Plan över Lödöse där undersökningområdena varifrån slagger har analyserats har markerats. Från Andersson (2010:fig. 13)

Figur 31. MK, Fnr 169, fragment av smidesskålla med ett grönärgigt inslag.

Figur 32. MK, Fnr 169 i tvärspott som visar en mycket homogen uppbyggd slagg.
Figur 33. MK, Fnr 169 i mikroskop. Översikt på den homogena slaggen som domineras av wüstit (ljust grå) med olivin och glas i mindre mängd. Små metalldroppar (ljusa) är fåtaliga.

Figur 34. MK, Fnr 169 i mikroskop. Detalj som visar slaggens metalldroppar (ljust röda) som består av koppar.

Figur 35. MK, Fnr 600, smidesskålla 1 i tvärsnitt.

Figur 36. MK, Fnr 600, smidesskålla 2 i tvärsnitt.

Figur 39. MH, Fnr 136 i mikroskop. Översikt på slaggen som domineras av järnoxider, såväl wüstit som magnetit (båda ljust grå). Magnetit förekommer som kantigare kristaller (se även nästa figur) och wüstit i rundare, mjukare former.

Figur 40. MH, Fnr 136 i mikroskop. Detalj som visar förekomsten av magnetit som kantiga ljust grå kristaller, omgivna av en grå glasfas.

Figur 41. MG, Fnr 283a, mindre smidesskålla.

Figur 42. MG, Fnr 329, oregelbunden slagg.

Figur 43. MM, Fnr 584e, oregelbunden slagg i tvärsnitt med mestadels homogent uppbyggd slagg, men avvikande sammansättning i nedre vänstra delen.

Figur 44. ME, Fnr 2, smidesskålla 1 i tvärsnitt.

Figur 45. ME, Fnr 2 i mikroskop. Översikt på slaggens centrala delar. I hela slaggens färgsmält förekommer olivin, wüstit och en glasfas. I bilden ses tydligt en skillnad mellan mer wüstit i den nedre delen och mindre i den övre.

Figur 47. ME, Fnr 3, smidesskålla i tvärsnitt.

Figur 49. MC, Fnr 4 i mikroskop. Översikt där slaggens innehåller stor ansamling av metall. Slaggen innehåller wüstit, olivin och en glasfas. Analyserar visar att metallen är en kopparlegering som innehåller både tenn och järn samt spår av antimon.
Figur 50. MC, Fnr 16, smidesskålla med avtryck mot vägg till höger i bild.

Figur 51. MC, Fnr 16, smidesskållan i tvärsnitt. Nere till höger syns en större koncentration av metalliskt järn.

Figur 52. MC, Fnr 16 i mikroskop. Översikt på slaggens övre delar. Likt många andra slagger innehåller den wüstit, olivin och en glasfas, men mängden olivin är relativt hög.

Figur 53. MC, Fnr 18, smidesskälla med avtryck efter förmodad blästeringång i bildens övre del.

Figur 54. MC, Fnr 18, smidesskållan i tvärsnitt.

Figur 55. MC, Fnr 18 i mikroskop. Översikt på slaggens nedre delar. Här förekommer wüstit, olivin och glas i något varierande proportioner.

Figur 56. MC, Fnr 19, smidesskållan 1 i tvärsnitt.

Figur 57. Jämförelse av slaggernas innehåll av mangan (som MnO) och magnesium (som MgO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och reduktionsslaggen TM16858 (fylld cirkel).

Figur 58. Jämförelse av slaggernas innehåll av fosfor (som \(\text{P}_2\text{O}_5 \)) och kalcium (som \(\text{CaO} \)). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och reduktionsslaggen TM16858 (fylld cirkel). Slagg 507 från Kaplanen 8 är ej med i diagrammet.

Figur 60. Jämförelse av slaggernas innehåll av fosfor (som \(\text{P}_2\text{O}_5 \)) och kalcium (som \(\text{CaO} \)). Data från figur 58 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.

Figur 61. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för smidesslagger (se text för referenser). Kromhalten är lägre i slaggerna från Lödöse än i slaggerna från Visby, för samma vanadinhalt.

Figur 63. Jämförelse av slaggernas innehåll av fosfor (som \(\text{P}_2\text{O}_5 \)) och kalcium (som \(\text{CaO} \)). Data från figur 58 samt referensdata för malmer (se text för referenser).
Bergmalmer varierar generellt i kalciumsammansättning, längs x-axeln, medan de limonitisiska malmerna varierar i fosforinnehåll längs y-axeln. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring. Axlarna har utökats för att täcka en större mängd referensdata.

Figur 64. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för limonitiska malmer i södra Sverige (se text för referenser), varav några med betydligt högre vanadininnehåll. Endast ett fåtal bergmalmer i referenserna har uppgift om dessa ämnen; i dessa fall med låga halter. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring som omfattar de flesta slaggerna från respektive plats. Ett fåtal plotter dock utanför respektive område.

men varierande manganinhåll. Det förekommer dock slaggar med lägt manganinhåll även från Västergötland.

Figur 70. Detalj ur figur 66 på motsvarande sätt som i föregående figur. Jämförelse med slaggar från Östergötland och Närke. Slaggar från Östergötland uppvisar stor variation i manganinhåll (även utanför skalan i denna figur; jämför figur 56 och 66), med vanligen höga eller mycket höga manganhalter, men sällan lågt manganinhåll.

Figur 74. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slaggar från Skåne. Slaggar från två lokaler (Ö. Spång och Bredabäck) i gränstrakten mot Halland och Småland är markerade med dubbel symbol. Dessa uppvisar liknande sammansättningintervall som slaggen från Lödöse. Flertalet av de övriga har tydligt högre fosforinnehåll, även slaggar från östra Skåne (Bromölla; ring).

Figur 76. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slaggar från Östergötland och Närke. En del av slaggen från båda landskapen uppvisar
liknande variation som slaggerna från Lödöse, samt tidigt som grupp från Närke avviker med betydligt högre fosforinnehåll.

Figur 78. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från figur 61 samt referensdata för reduktionsslager huvudsakligen från sydligaste Sverige, men även exempel från Dalarna och Gästrikland. Diagrammet visar att många slager är koncentrerade kring halter under 100 mg/kg krom och under 400 mg/kg vanadin. Ett fåtal slager från Östergötland har högre krominnehåll. Från Småland, Skåne och Halland finns ett antal slager med betydligt högre vanadininnehåll. Många av dessa kommer från närliggande platser i gränstrakterna mellan landskapen. Den nu analyserade reduktionsslaggen från Gotland har också nämnvärt högt innehåll av vanadin. I följande diagram visas slager från ett eller ett fåtal landskap åt gången för att lättare kunna arskilja eventuella skillnader och likheter.

Figur 85. Jämförelse av slaggernas innehåll av de sällsynta jordartsmetallerna lantan och cerium. Slagger från Visby och Lödöse har låga eller mycket låga absoluta halter av både cerium och lantan jämfört med många av slaggerna i referensmaterialet.

Figur 86. Detalj ur föregående figur med ett urval av slagger för jämförelse, utan de aktuella slaggerna från Visby och Lödöse. Liksom i figur 84 visar två schematiska linjer skillnader i proportioner mellan cerium och lantan. Slagger från Småland och Östergötland finns längs båda linjerna medan slagger från Västergötland mestadels följer linjen med flackast lutning.

Figur 87. Sällsynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slagger följer linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali för alla slagger.

Tabellförteckning

Tabell 1. Förteckning över slagger från Visby, från Gotlands museum samt en från Stenkumla sn på Gotland, från Tekniska museet.

Tabell 2. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Visby.

Tabell 3. Förteckning över slagger från Lödöse, från Lödöse museum.

Tabell 4. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Lödöse.

Tabell 5. Totalkemisk analys av slagger från Lödöse. Den första delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligt återgivet som Fe$_2$O$_3$ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.

UV GAL RAPPORT 2012:12
GEOARKEOLOGISK UNDERSÖKNING

Järnsmide i Visby och Lödöse

Arkeometallurgisk undersökning av slagger
Gotland, Visby, fornlämning 107:1
Västergötland, St Peders socken, Lödöse, fornlämning 23:1

Lena Grandin, Eva Hjärthner-Holdar och Mia Englund
UV GAL RAPPORT 2012:12
GEOARKEOLOGISK UNDERSÖKNING

Järnsmide i Visby och Lödöse
Arkeometallurgisk undersökning av slagger
Gotland, Visby, fornlämning 107:1
Västergötland, St Peders socken, Lödöse, fornlämning 23:1
Dnr 424-0149-2010

Lena Grandin, Eva Hjärthner-Holdar och Mia Englund
Undersökningen har genomförts med ekonomiskt bidrag från Kungliga Vitterhets Historie och Antikvitets akademien

Riksantikvarieämbetet
Arkeologiska uppdragsverksamheten
UV GAL

Portalgatan 2A
754 23 UPPSALA
Växel: 010-480 80 30
Fax: 010-480 80 47

e-post: uvgal@raa.se
e-post: fornamn.efternamn@raa.se
www.arkeologiuv.se

© 2012 Riksantikvarieämbetet
UV GAL Rapport 2012:12
ISSN 1654-7950
Utskrift Uppsala, 2012
Sammanfattning

Undersökningen och analyserna har visat en del förväntade resultat men även en del oväntade observationer har gjorts som har lett till nya tolkningar om detaljer i järnhantverkets processer.

Ett urval för analys gjordes med utgångspunkt i tidigare publikationer och dokumentationsmaterial kring slagger i de båda städerna. Bland uppgifterna fanns indikationer om att såväl järnfärdning som smide ägt rum i Lödöse. Dessutom har det spekulerats i att bergmalm från Utö gruvor i Södermanland, som påträffades som enstaka klumpar bland slagger i Visby vid undersökningar på 1920-talet, använts för att tillverka järnet som smiddes i Visby.

Bland resultaten kan vi lyfta fram följande:

• Slaggerna representerar huvudsakligen primärsmide, där luppar har rensats på slagg
• Järnet är ursprungligen blästjärn, från sjö-/myrmalm, mindre troligt från bergmalm
• Lupparna som smiddes kan ha varit stora och smideshärden konstruerad för slaggtappning
• Den järnfärdning som omnämns i handlingar, främst i Lödöse, finns det ej belägg för i slaggmaterialet
• Det finns inga belägg för att malm från Utö har använts för järnfärdningen som ligger till grund för smidet i Visby
• Järnet har kommit till de båda städerna från flera leverantörer

Sedan tidigare är det känt att järnproduktionen i Sverige under vikingatid och medeltid var tämligen stor med en troligen gynnsam konjunktur men att olika områden har olika höjdpunkter i sin produktion. En slutsats som man kan dra från den nu genomförda studien förefaller ge stöd för detta och att man köpte järn där tillgång fanns och att järnhandeln var tämligen välutvecklad. Detta medför också att det dessutom fanns ett, för sin tid, välutvecklat distributionsnät för järn och att man inte endast införskaffade järn från de mest närliggande produktionsområdena.
Abstract

Iron has played a crucial role for the formation of the Swedish Medieval state. In his research, Hans Andersson has also discussed iron as a driving force for the early urbanisation (2010, 2011). On his commission, GAL has now made archaeometallurgical analyses on slags from the two Medieval towns Visby and Lōdöse to study some fundamental issues regarding smithing and forging, as what type of iron that was worked in the towns – blooms or bars – and whether it is possible distinguish iron production areas that delivered the metallic iron.

The study partly presents expected results as that the majority of the material comprises typical plano-convex slags in both towns, but also more unexpected observations allowing for new interpretations regarding details in the iron working processes.

The selection of slag samples for analyses were based on previous publications and various documentation and their information that indicated that iron smelting as well as smithing took part in Lōdöse. Furthermore, discussion have been vivid regarding a few lumps of magnetite ore the was provenanced to Utō mines south of Stockholm and that these were used in the iron production for the iron forged in Visby.

A few brief results from this study are:

- The majority of the slags from both Visby and Lōdöse represent primary smithing of iron blooms
- The iron is most probably produced in bloomery furnaces run on limonitic ores, less likely rock ores.
- The blooms that were cleansed might have been large and the hearths might accordingly have been constructed for tapping of slag (Visby)
- The iron production that is indirectly indicated in documentation from Lōdöse can not be verified by the characteristic’s of the slags that all are smithing slags
- There are no evidence that the suggested magnetite ore from the Utō mine was smelted and used for further smithing in Visby
- Several iron production areas seem to have accounted for the iron supply to Visby as well as to Lōdöse

As already previously known, iron production was extensive during the Viking and Medieval times in Sweden, but fluctuated from region to region. The results from this study give further support to this and that iron was acquired where it was available. The iron trade seems to have been well established in distribution networks making it possible to buy iron not only from the spatially nearest production areas.
Inledning

Bakgrund

Slaggmaterialet från Lödöse har veterligen överhuvudtaget inte analyserats.

För att få mer kunskap kring smidet i Visby och Lödöse och deras järndistribution har därför arkeometallurgiska analyser av ett urval av slagger från de båda städerna utförts.

Undersökningen har genomförts med ekonomiskt bidrag från Kungliga Vitterhets Historie och Antikvitets akademien.

Vi vill rikta ett stort tack till Gotlands museum i Visby och Lödöse Museum för all hjälp och vänligt bemötande samt för tillstånd att få prova slagger för analys.

Slagger som indikatorer på hantverk och proveniens

Slagger från såväl järnframställning som smide är viktiga indikatorer för det hantverk de representerar. Deras yttre former såväl som uppbyggnad i mikroskala och kemisk sammansättning kan ge information om använd råvara och dess ursprung, typ av metallhantverk samt produktens beskaffenhet.

Typ av smide kan ses ur flera perspektiv. Vanligen skiljer man primärsmede från sekundärsmede. Vid primärsmedet utgår smedan från en mer slaggrik råvara som behöver rensas och kompakteras innan den smids vidare. Sekundärsmedet, också kallat föremålssmedet, utgår från en
renare råvara t.ex. från en slaggrensad och kompakterad lupp och/eller olika typer av ämnesjärn vilka har varit i fokus i många andra sammanhang. Att skilja mellan dessa båda smidestyper innebär därför inte bara en direkt bestämning av processtyp utan indirekt ger det besked om i vilken form som järnet köpts in eller funnits tillgängligt. Behovet av primärsmede indikerar samtidigt att det är ett blästjärn och inte ett masugnsjärn som varit utgångspunkt. Att konstatera tillverkningsprocess är således viktigt i en brytningstid mellan två olika järnframställningstekniker.

Slaggernas uppbyggnad och deras kemiska sammansättning är grundläggande faktorer för att kunna urskilja de områden som järnet tillverkats i, dvs. varifrån malmen kommer. Frågan kring att hitta metallers ursprung, med hjälp av olika naturvetenskapliga analyser, har ofta diskuterats inte minst inom järnforskningen. För tillfället är den mer aktuell än någonsin i takt med att analys- och utvärderingsmetoder kontinuerligt förfinas. Flera projekt har initierats inom Skandinavien och Geoarkeologiskt Laboratorium samarbetar med Kulturhistorisk Museum i Oslo kring att besvara frågor om det norska järnets proveniens under yngre järnåldern och medeltid (Grandin 2009a, Grandin m.fl. 2010, Bill m.fl. 2011). För tillfället planeras det också för ett sameuropeiskt projekt i proveniensfrågor där metodutveckling står i fokus. Här finns det följaktligen en stor möjlighet att med hjälp av slaggmaterialet från Visby och Lödöse, samt de presumtiva proveniensområdena, kunna vara en del av denna utveckling. Även om man inte med säkerhet kan säga varifrån malmen kommit så kan man med större säkerhet fastställa varifrån den inte kan ha kommit.

Det är väsentligt för den fortsatta diskussionen att bestämma karaktären på smidet i dessa två städer. Om det går att föra diskussionen om proveniens vidare skulle vi få ett betydelsefullt redskap för att vidareutveckla frågor kring hur järnproduktionen och järdistributionen var organiserad och därmed kunna stärka studierna om järnets roll för den medeltida urbaniseringen.

Liknande undersökning

Analyser – metoder och möjligheter

För att kunna belysa ovanstående problemställningar har en arkeometallurgisk pilotstudie nu utförts för att besvara några grundläggande frågor kring smiden i Visby och Lödöse. I dessa ingår
morfologisk granskning av slagger för att få en första inblick i deras uppbryggan. Ett mindre urval har undersökts i mikroskop för att få en detaljerad information om uppbryggan och använda tekniker. Dessa slagger har också analyserats med avseende på kemisk sammansättning där resultaten ligger till grund för att söka efter råvarans proveniens.

Järn från blästugn eller masugn?

Primärsmede/färskat järn och/eller sekundärsmede!

Järn som tillverkas i blästugn innehåller ofta slagg som behöver rensas bort innan föremålssmedet kan påbörjas. Detta görs i det så kallade primärsmedet under det att masugnsjärnet oftast färskas vid hyttplatsen för att bli smidbart, vilket gör att primärsmedesslagg som saknas. Förekomst av slagger från primärsmedesprocessen bidrar följaktligen även med kunskap kring framställningsteknik. Det är dock inte alltid helt lätt att särskilja primärsmedesslaggerna från sekundärsmedesslaggerna vilket slaggerna i Visby och Lödöse gjorde oss klart uppmärksamma på.

Slagar från sekundärsmade, dvs. föremålssmede, är dock oftast mer komplext uppbryggda. I deras uppbryggan är det också möjligt att spåra smidestekniker som användning av vällsand, vilket antyder att smeden har vält samman järn av olika kvaliter, t.ex. ett mjukare järn med det hårdare stålet. Slagglernas yttre former och innehåll av annat material kan också återspeglar smideshärden uppbryggan. Metalldroppar från andra metallar kan också vara en indikation på att man vid sekundärsmadet använt sig av sådana för bland annat inläggningar.

Proveniens

Frågan om proveniens har stor betydelse för hur järnproduktionen och järndistributionen var organiserad och vilken roll järnet hade för den medeltida urbaniseringen däremot ser Visby och Lödöse ha valts som två studieobjekt. Frågan är dock oerhört komplett och innefattar många variabler. Vi kan dela upp dem i två huvudgrupper för att överskåda aktuelle frågor. Först är om allt järn till respektive stad kommer från samma järnproducent eller om det har funnits flera leverantörer. Detta är grundläggande frågor som skillnader och likheter i slagglernas kemiska sammansättning kan ge en första inblick i. Den andra delen av frågeställningen rör var dessa producenter fanns. Här är vi beroende av referensdata för detaljerade jämförelser. Den grundläggande förutsättningen är att malmer, och de ämnen som förekommer i dessa
förutom det eftertraktade järnet, speglar den geologiska omgivning som de har bildats i och följaktligen finns det regionala skillnader som beror på berg- och jordarternas sammansättning. Under malmens väg från råvara till föremål följer dessa ämnen med i processerna och fördelar sig mellan slagg och metall och genom att hitta ämnen som är signifikanta i vissa områden finns det möjligheter att hitta provenienisen.

Det är också betydelsefullt för analyserna att kunna välja slagger från främst primärsmedet då där finns mindre av sekundära inblandningar och dessa följaktligen mest liknar reduktionsslagger utifrån ett kemiskt perspektiv. När man väljer slagger från sekundärsmidet måste man välja sådana som inte har för omfattande inblandning av annat material, t.ex. via tillsatser som inte härstammar från malmens sammansättning.

I detta sammanhang är det av stor vikt att det finns analyser även av slagger från järnframställningen i de presumtiva tillverkningsområdena att jämföra med.

Mängden och kvalitén på tillgängliga data varierar dock kraftigt från område till område. En del äldre analysdata innehåller dessutom oftast endast ett fåtal huvudämnen, t.ex. järn, kisel och kalcium, men det är vanliga ämnen som förekommer i betydligt lägre halter, s.k. spårämnen som är mest specifika för olika regioner. Optimalt bör även slaggorna från förmodade produktionsområden vara samtida med smidet för en jämförelse. Visserligen kan samma malmtyper ha använts även i framställning under äldre järnålder som senare inom en region men utvinningsprocessen och hur olika ämnen fördelas sig mellan slagg och metall kan skilja sig åt.

Undersökningens förutsättningar

Visbys slagger

Bland slagglager i Tekniska museets samlingar finns ett fåtal från Gotland. Några av dem är re duktionsslagger av betydligt äldre datum (jämnålder?) än slaggarna från Visby.

Förfrågningar har också gjorts till Sveriges Geologiska Undersökning (SGU) eftersom statsgeolog H. Hedström omnämns av Nihlén (1927) som en av dem som karaktäriserat främst malmklumpar, men även annat material från undersökningen. Hos SGU finns en del dokumentation om Hedström och hans arbete på Gotland, men inget material. Inte heller Naturhistoriska Riksmuseet (NRM) har vare sig material från denna Nihlén's undersökning eller uppgifter om var det kan finnas eller ha funnits. Undersökningen i sig är dock känd även hos NRM, bland annat eftersom N. Zénzen vid NRM också granskade malmklumparna från Visby.

Det finns anteckningar i Tekniska museet om att slagglager från Visby skall ha funnits i magasinen men om detta kan ha varit Smedjegatsslagglarna eller ej går inte att utröna då inga slagglager eller närmare beskrivningar av plats och fynd finns i arkiven på Tekniska Museet.

koppar/kopparlegeringshantverk under det att ut mot och i Smedjegatan tog järnslaggen helt överhanden. Inga medeltida lager fanns kvar i kvartersmarken men i botten på schaktet fanns, vad som beskrivs som ett ugnsfundament med okänd funktion vilket dateras till 1200-tal (Nydolf 2005:30 a.a.).

Ett urval har gjorts för mer detaljerade genomgång och efterföljande analyser. Eftersom inga slagger stod att finna från Smedjegatan i Visby, som vi inledningsvis hade prioriterat, har urvalet av slagger kommit att koncentreras till intilliggande kvartersmark vid Smedjegatan. En hel del av dessa material har framkommit under senare tids undersökningar.

I Tekniska Museet fanns några reduktionslagger. På Gotland finns järnframställning från förromersk järnålder och framåt men inte i stora...

Malmfynd i Visby

vad gäller flera ämnen, men att det låga innehållet av magnesium i slaggerna från Visby talar mot ett släktskap med Utö-malmen.

Malmfynden och diskussionen om reduktion av malm i Visby (eller dess närmare) är intressant ur flera aspekter. Delar är naturligtvis proveniensfrågan av betydelse, dels frågan om vilka processled som har genomförts. Om man ska försöka knyta Utö-malmen till slaggerna i lagren i Smedjegatan och andra kvarter måste man komma ihåg att det är främst smidesslagger som har observerats. Det innebär att vi saknar ett processled (Se bakgrundstexten ovan), dvs. reduktion av malm. Som vi nämnt ovan har bergmalmer dessutom huvudsakligen smälts i masugnar och inte blästugnar, även om undantag finns, varför det är en helt annan framställningsprocess som avses. Även Nihlén berör denna tanke, men något försiktigt (1927).

Lödöses slagger

Det är främst i de norra stadsdelarna som järnhantering har registrerats. En expansion av stadsmrådet, norr om åarmen, anses ha skett på 1200-talet, kanske i samband med att klostret etablerar sig, efter 1243. Men med tanke på en del tidiga dateringar i materialet verkar det som om man haft viss verksamhet/bostäder redan under 1100-talet.

Järnhantering finns främst i de norra stadsdelarna, i det som benämns M, även om inslag av annan metallhantering förekommer. Områden som domineras av koppar- och kopparlegeringshanteringen är belägna i öster. Slagg verkar tyvärr inte ha samlats in systematiskt förrän under 1970-talets början.

En intressant företeelse är att härdat endast påträffats i områden med smedjor. Järnsmedjor och smedjor för kopparlegering samt gjuterier förekommer blandat med bostäder och det omnämnts också att de påträffade lämningarna visar att man även skulle ha reducerat malm till järn. I undersökningssmåområdena finns bl.a. uppgifter om ”brandgropar” eller ”gropugnar” i MH samt fynd av ”myrmlamstackor” i ME. Här förekommer också uppgifter om ”lerugnar” i MK som då också skulle vara ugnar för framställning av järn. I MF påträffades en byggnad innehållande en lerpall med härd tolkad som en smedja. Runt alla dessa anläggningar fanns stora mängder slagg. Det äldsta skedet för järnanläggningen i Lödöse är 1100-talets slut och har påträffats i MK. I övrigt verkar slagglagren härstamma i huvudsak från 1200−1400 (Andersson 2010:93ff a.a. litt.).

Inga analyser, i modern tid, förefaller ha genomförts av slagger från Lödöse men Buchwald har analyserat slagginneslutningar i tre nitar, från 1300-talet. Han föreslår att dessa, utifrån sina kemiska sammansättningar, där två av dem har höga manganhalter, kan ha tillverkats av myrmlam i Västergötland eller Halland (2008:54).

Metod

Varje utvald slagg har därefter delats och ett utsnitt har slipats och polerats för undersökningar i mikroskop. Slaggerna analyserades även med totalkemiska analysmetoder där alltifrån huvudkomponenter som
järn och kisel till ämnen i spårhalter som kobolt och nickel kvantifierades.

För ett fåtal slaggar har kompletterande kemiska analyser genomförts med elektromikrosond för att bestämma sammansättning på inneslutna kopparlegeringar.

I några slaggar noterades koncentrationer av metalliskt järn. Dessa undersöktes metallografiskt för att bestämma järnets sammansättning och uppbyggnad, som ett led i analysen att urskilja processled och hur järnet bearbetats.

Analysetdata presenteras också med hjälp av olika diagram där det inledningsvis kan konstateras om slaggar från respektive stad uppvisar likartade drag eller om skillnader finns. I nästa tolkningssteg relateras analysvärdena till tillgängliga referensdata för att se om någon korrelation föreligger till något eller några av de hypotetiska områdena.

Okulär granskning

Okulär granskning görs av samtliga fyndposter som valts ut för att karaktärisera dem så noggrant och detaljerat som möjligt. Är det endast smide som har ägt rum på platsen eller finns det tecken på andra processer och i så fall vilka? Vilket eller vilka led i smidet är det, är det primärsmede från luppar/slaggrika ämnesjärn eller sekundärsmede från slaggfria ämnesjärn? Slaggernas uppbyggnad ger indikationer om detta och också om hur smileshärden kan ha varit utformad.

Petrografisk undersökning

Av 19 slaggar tillverkades tunnslip (av MINOPREP, Hunnebostrand) av så stora ytor som möjligt av deras tvärsnitt för att kunna få en detaljerad bild av det processled de representerar och hur processen fungerat. Petrografiska undersökningar utfördes i genomfallande och påfallande (planpolariserat) ljus för att identifiera materialets olika komponenter och texturella drag. Undersökningsen gjordes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digitalkamera.

Slaggar bestrå huvudsakligen av olivin, wüstit och glas. Vanliga inslag är också hercynit, magnetit, leucit, limonit och metalliskt järn. Olivin är ett silikatmineral med den allmänna formeln A_2SiO_4, där A oftast är järn (fayalitisk sammansättning) men mangan, magnesium och kalcium kan förekomma i mindre mängder. Wüstit, FeO, är också ett mycket vanligt inslag i slaggar från blästbruket. Om höga koncentrationer av wüstit förekommer är slaggens totala järnhalt vanligtvis också hög. Glas utgör slaggaras ”restsmälta” och kan därför variera kraftigt i sammansättning beroende på vilka mineral som tidigare kristalliserat, slaggernas totalsammansättning och avkylningsförlopp. Magnetit, Fe$_3O_4$, kan förekomma i stället för wüstit om temperatur och/eller syretryck är högre. Ett mineral som kan förekomma i slaggar med relativt höga aluminiumhalter är hercynit, FeAl$_2$O$_4$. Hög aluminiumhalter i kombination med höga kaliumhalter återfinns i leucit, KAlSi$_2$O$_6$, som i vissa slaggar kan förekomma i stället för den vanligare glasfasen. Droppar av metalliskt järn, några mikrometer stora, är också vanligt inslag i slaggar från
reduktionsprocessen. Limonit, järnhydroxider med varierande sammansättning, är huvudkomponent i sjö- och myrmalm och kan uppträda i slagger som oreducerade rester men vanligtvis förekommer limonit som en sekundär bildning, dvs. i form av rost.

Metallografisk undersökning

Undersökningen genomfördes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digitalkamera.

Elektronmikrosondanalyser

Mikrosondanalyser har gjorts på fyra förekomster av kopparlegering i slanger för att bestämma legeringens sammansättning. Samtidigt analyserades även metallkoncentrationer som domineras av järn. Analyserna gjordes på de polerade tunnslip som först undersöks petrografiskt. Analysen genomfördes med elektronmikrosond JEOL JXA-8530F vid CEMPEG (Centre for Experimental Mineralogy Petrology & Geochemistry) vid Institutionen för Geovetenskaper, Uppsala Universitet. En analysrutin speciellt optimerad för kopparlegeringer tillämpades.

Metoden innebär att en elektronstråle fokuseras på önskad punkt på provet. De ingående elementen kan därmed detekteras och deras halt mätas. På detta sätt får man kvantitativa data av sammansättningen på de olika element som ingår i materialet.

Totalkemiska analyser

Totalkemisk analys utfördes på 18 slaggprov hos ALS Scandinavia, Luleå. Använd analysmetod är ICP-AES för huvudelement och ICP-QMS för spårelement. Totalt analyserades 43 element i varje prov (tabell 5). Slaggproven har också studerats i mikroskop (petrografisk undersökning). I standardanalysen för slagger från järnhantverk ingår inte

Resultat

De slagger som har ingått i studien finns sammanställda i tabellform för respektive stad där det också framgår vilka som har analyserats mer detaljerat och med vilken typ av analys. Resultaten av analyserna för slagarna presenteras inledningsvis detaljerat för varje slagg där deras yttre beskrivs liksom de observationer som har gjorts i mikroskop. I tabellform finns en sammanställning av dessa observationer. En samlad bedömning om slagarna följer därefter. De kemiska analyserna följer sedan i ett eget stycke där slagarna behandlas tillsammans.

Tabell 1. Förteckning över slaggar från Visby, från Gotlands museum samt en från Stenkumla sn på Gotland, från Tekniska museet.

<table>
<thead>
<tr>
<th>Kvarter/gata</th>
<th>Benämning</th>
<th>Notering</th>
<th>Provtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorn 11</td>
<td>2315</td>
<td></td>
<td>T, ICP, E</td>
</tr>
<tr>
<td>Priorn 11</td>
<td>2478</td>
<td></td>
<td>T, ICP</td>
</tr>
<tr>
<td>St Clemens 4</td>
<td>780530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplanen 8</td>
<td>507</td>
<td></td>
<td>T, ICP, E</td>
</tr>
<tr>
<td>Kaplanen 8</td>
<td>1278</td>
<td>Del av större fyndask</td>
<td>T, ICP</td>
</tr>
<tr>
<td>Gräbrodern</td>
<td>Utan nr</td>
<td>Ur plastback</td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>169</td>
<td>1 st ur fyndpåse</td>
<td>P</td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>304</td>
<td>Del ur större fyndask</td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>307</td>
<td></td>
<td>T, ICP</td>
</tr>
<tr>
<td>Abboten 1</td>
<td>54</td>
<td></td>
<td>T, ICP</td>
</tr>
<tr>
<td>Abboten 1</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>142</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>485</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Stora Torget Visby (Nihlén) CS819</td>
<td>Schakt II</td>
<td>CS819:15</td>
<td>T, ICP</td>
</tr>
<tr>
<td>Fyndback ur Nihlén’s samling</td>
<td>Anonym</td>
<td>Slagg ur ask märkt ”22 st järnklumpar”</td>
<td></td>
</tr>
<tr>
<td>Fyndback ur Fardelins samling</td>
<td>”Stenålderslagret Visby”</td>
<td>Slagg ur ask märkt ”12 st järnklumpar”</td>
<td></td>
</tr>
<tr>
<td>Stenkumla sn</td>
<td>TM 16858</td>
<td></td>
<td>T, ICP</td>
</tr>
</tbody>
</table>

I kolumnen ”Provtyp” har noterats vilka som har analyserats ytterligare. T = tunnslip för prov som undersöks petrografiskt, ICP = prov som analyserats med totalkemiska analyser, P= polerprov som undersöks metallografiskt, E= prov som har analyserats med elektronmikroskop.

Visby

Priorn 11, Fnr 2315

Okulär granskning

I delat snitt (fig. 2) framträdes en mestadels homogen uppyggd slagg med mindre porer i nedre halvan, större i den övre, men utan tydlig skiktning. I botten finns små kolstycken och direkt över dessa är slaggen ljust grå men i övrigt grå. Denna slagg har valsats för fortsatta analyser.

I fyndposten finns också en fluten, platt och plan slagg ca 70 mm lång och 35 mm bred. Tjockleken varierar från 6–18 mm, vikt 49 g.
Undersidan av slaggen är metallglänsande grå där slaggsträngar har stelnat mot underlaget. Överytan är jämn och slät, grå-röd och med stelningsstruktur. Den är svagt magnetisk på överytan.

Undersökning i mikroskop

Figur 2. Priorn 11, smidesskållan Fnr 2315 i tvärsnitt.

Figur 3. Priorn 11, Fnr 2315 i mikroskop. Översikt på homogen slagg som består av olivin (ljust grå) och en mellanliggande glasfas (mörkare grå).

Elektronmikrosondanalys
En kemisk analys i metalldroppar bekräftar att den ena typen domineras av järn, med spårhalter av koppar och kobolt. Den andra typen av dropp är huvudsakligen koppar med drygt 1 % järn.

Slaggen är en homogen, relativt grovkornig, olivinrik skälla. En riklig syretilgång framträder i form av små magnetitkristaller. Den innehåller såväl metalliskt järn som koppar.

Figur 5. Priorn 11, slaggen Fnr 2478 i tvärsnitt med tydligt urskiljbara slaggsträngar.

Priorn 11, Fnr 2478
Okulär granskning
I fyndposten ingår flera små slaggstycken av liknande typ (Se även Fnr 2315 från Priorn 11). Den största slagen är 45×43×30 mm stor och väger 72 g. Slaggernas totala vikt är 219 g. Slaggerna är uppbygga av flera pålagrade slaggsträngar som är grå på undersidan och grå-röda på
översidan där de är magnetiska och något skrunkliga till följd av stelnningen.

I delat tvärsnitt (fig. 5) framträder de pålagrade slaggträngarna tydligt, likt stearinsläger med mestadels täta släger med större hålrum centralt i slaggsträngarna. Sammansättning är mestadels mycket likartad.

Figur 6. Priorn 11, Fnr 2478. Översikt från mikroskopet. Slaggsträngarna urskiljs med hjälp av tunna ljusa band av magnetit och skillnader i kornstorlek (finast närmast kontakterna).

Undersökning i mikroskop
Stora delar av slaggens tvärsnitt ingår i det undersökta provet. De okulärt observerade pålagrade slaggsträngarna syns även tydligt i mikroskop (fig. 6), med tydligt definierade kontakter. Slaggsträngarna är mycket likartat upbyggda och består av olivin, wüstit och en glasfas, samt sporadiskt små droppar av metalliskt järn. De är finkorniga i ytterkanterna till följd av relativt snabb avkylning, och något grövre mer centralt. Längs kanterna finns också en tunn zon av finkornig järnoxid.
(fig. 7). Denna är ställvis svår att urskilja men i de fall som kristaller kan observeras rör det sig dels om magnetit, dels om komplext sammansatta järnoxider.

St Clemens 4, Fnr 780530

Okulär granskning

Intakt konkav-konvex smidesskålla (fig. 8), oval i plan med måtten 130/155 mm. Tjocklek som mest ca 55 mm. Vikt 1381 g. Botten är täckt av sekundärt fastkittat material. Överytan är mörkbrun med trögfluten slagg. Längs kanterna, nära överytan, finns ställvis inneslutna kolstycken. Slaggen är lokalt magnetisk på överytan, i övrigt omagnetisk.

Smidesskålla.

![Figur 8. St Clemens 4, Fnr 780530. En nästan hel smidesskålla.](image)

Kaplanen 8, Fnr 507

Okulär granskning

I fyndposten ingår ett större och nio mindre slaggfragment av samma typ, eventuellt från ursprungligen samma stycke. Det största stycket väger 133 g och är 55×40 mm i plan. Tjockleken är som mest 45 mm, vilket sannolikt är ursprunglig tjocklek. Slaggen är svartglasig och består av flera pålagrade slaggsträngar. Slaggen är extremt tät, speciellt i övre halvan.

I delat tvärsnitt framträder slaggens täthet och de pålagrade slaggsträngarna ännu tydligare.
Undersökning i mikroskop

Elektronmikrospeckanalys
Kemiska analyser i några metalldroppar bekräftar att de huvudsakligen består av koppar. De innehåller också några tiondels viktprocent av antimon och järn. Dessutom finns små blydroppar (< 1 mikrometer) i koppardroppen.

Kaplanen 8, Fnr 1278
Okulär granskning
I fyndposten ingår tre slaggfragment varav två sannolikt är del av samma slagg. En slagg är del av smidesskålla, ca en fjärrdel. Vikt 458 g. Största längd är 95 mm vilket möjlichen motsvarar halva diametern. Tjockleken varierar från 20 till 35 mm. Slaggen är omagnetisk. Troligen har skålans varit plan-konvex med en förhöjning längs en ytterkant. Slaggen är täckt av sekundärt fastkittat material men en mörk, relativt porös slagg skymtar genom detta.

De två andra bitarna är fragment av annan karaktär. Total vikt 275 g. Storlek i plan ca 100×70 mm, tjocklek varierande från 25 till 60 mm. Slaggen i dessa är oregelbunden i formen och ingen tydlig skallform kan urskiljas. Slaggen är troligen tuddlad. En halva utgörs av slagg som är uppyggd av små slaggsträngar som har stelnat runt små kolstycken. Den andra halvan är glasigare slagg i form av ett större slaggflöde. Slaggen är mestadels omagnetisk men lokalt magnetisk vid rostiga fläckar.

Samliga bitar är sannolikt smidesslagger.

Gråbrodern, Utan nummer
Okulär granskning
Del av plan-konvex smidesskalla, ca halv. Vikt 598 g. Diameter 120 mm, tjocklek som mest ca 50 mm. Bottensidan är täckt av sekundärt korroderat material, övertytan likaså. Där finns även fastkittade fragment av rodbränd lera, gråbränd lera, kolstycken och benfragment.

I delat tvärnitt framträder en slagg om är relativt homogen i sin uppyggning. Eventuellt är den något skiktad med avseende på porförekomst. Den är magnetisk på snittytan.

Smidesskälla.
Schweizergränd, Fnr 78
Okulär granskning
Del av smidesskålla, fragment. Vikt 93 g. Inga ursprungliga ytterkanter i plan är bevarade men mätten är 60×45 mm. Tjockleken på ca 28 mm är dock ursprunglig. Slaggen är grå med en undersida som har stelnat mot sandigt underlag, övertyan är något ojämn med ensta inneslutna kolstykten. I profil (fig. 9), men ej delad, framträder en något skiktad slagg.

Schweizergränd, Fnr 169
Okulär granskning

Vid delning visar det sig att stora delar av stycket består av svampigt metalliskt järn som är omgivet av slagg. Slagg dominerar i botten som ett ca 10 mm tjockt lager. Däröver finns järn och slagg tillsammans, med slagg huvudsakligen längs kanterna och järn mer centralt. Stycket är tämligen rikt på hålrum.

Det metalliska järnet är genomgående grovkornigt och har en mestadels låg, men något varierande kolhalt, med huvudsakligen ferrit och mindre mängder perlit.
Schweizergränd, Fnr 288
Okulär granskning
Oregelbunden slaggklump i form av ett fragment med mycket sekundär beläggning på ytan. Vikt 146 g. Största mätt ca 50 mm. Inga ursprungliga ytterformer finns bevarade som antyder att det skulle vara en smidesskålla, varför denna slagg är svår att definiera.

Schweizergränd, Fnr 304
Okulär granskning
I fyndposten ingår två slaggfragment som troligen kommer från samma slaggstycke. Total vikt 279 g. Storlek i plan 75×55 mm, tjocklek 60 mm. Slaggen är grå, glasig till matt. Längs en omböjd ytterkant finns rödbränd lera på sidan. Längs denna finns flera pålagrade stearinliknande slaggsträngar.

Vid delning framträder ett heterogent uppbyggd stycke med en kant av rödbränd lera och växelvisa lager av slagg och delvis smält silikatrikt material.

Slagg och infodring tillsammans, utan tydlig skållform.

Schweizergränd, Fnr 307
Okulär granskning
I fyndposten ingår flera slaggfragment med mycket sekundär beläggning. Det största väger 197 g, är kantigt med rundade hörn i plan 70×50 mm, med en tjocklek som mest 35 mm. Möjlig är det del av en smidesskålla, men den saknar den typiska plan-konvexa formen. På bottenvyta finns tunnare stearinliknande slaggsträngar medan övertytan utgörs av mer lättflutna större slaggflöden. Lokalt finns inneslutna kolstycken, bland annat nära bottenvyta.

Vid delning framträder en homogent uppbyggd slagg, dock med något varierande porositet. Större porer förekommer i botten och överst, däremellan är de mindre i storlek.
Undersökning i mikroskop

Slaggen är en homogen, relativt grovkornig skålla som innehåller mycket wüstit. Små droppar av metalliskt järn, fåtal av koppar(legering) förekommer i slaggen.

Figur 12. Schweizergränd, Fnr 307 i mikroskop. Översikt på homogen slagg som är relativt grovkornig och innehåller wüstit (ljus), olivin och glas.
Abboten 1, Fnr 54

Okulär granskning

Fyndposten innehåller en större och fem mindre slaggfragment av liknande typ. Det största väger 490 g och är del av en plan-konvex smidesskåla med största mätt 100 mm som är något mindre än hela diametern. Maximal tjocklek är 40 mm centralt. Slaggen är omagnetisk, grå, och nästan metallglänsande runtom.

I delat snitt (fig. 14) framträder en mycket homogen uppbyggd slagg såväl vad gäller sammansättning som porförekomst och -storlek. Enstaka droppar av metalliskt järn kan observeras på snittytan.
Figur 15. Abboten 1, Fnr 54. Översikt från mikroskopet på slagen som domineras av olivin (ljusgrå) och en glasfas (mörkare grå). Wüstit förekommer i mindre mängd (tunna ljusa formationer).

Figur 16. Abboten 1, Fnr 54. Detalj från mikroskopet som visar att olivinkristallerna är zonerade, dvs., deras yttersta kant (mörkare grå; se pil) har en avvikande sammansättning.

Undersökning i mikroskop
Slagen är mycket homogen i sin uppbyggnad även i mikroskala (fig. 15). Den är tämligen grovkornig i hela sin tjocklek förutom allra närmast botten där den är något finkornigare. I hela slagen förekommer grovkorniga olivinkristaller (zonerade; se fig. 16), något finkornigare dendritisk wüstit och en glasfas. Olivin förekommer även som något finkornigare långsmala kristaller. Metalliskt järn, i form av små droppar förekommer ytterst sparsamt, i den allra översta respektive nedersta delen, där metallen delvis också har rostat.

Homogen skälla! Den är grovkornig (långsam avsvalning) och innehåller både olivin och wüstit samt små droppar av metalliskt järn.
Abboten 1, Fnr 153

Okulär granskning

Smedjan 7, Fnr 138

Okulär granskning

I fyndposten ingår flera slaggfragment av lite olika karaktär. En typ utgörs av glasiga strängar, där några är större med flera pålagrade slagsträngar, andra är mindre och består enbart av enskilda slagsträngar. Den största väger 71 g, är ca 80×65 mm i plan och som mest ca 18 mm tjock.

Två andra fragment är delar av en smidesskålla, troligen nästan plan-plan. Inga originalytterkanter är bevarade. Av diametern återstår ca 50 mm. Tjockleken är troligen ursprunglig, ca 25 mm. Den största delen väger 125 g. I skållan kan enskilda slaggflöden också urskiljas, men i snitt förefaller slaggen vara homogen i sammansättning. Långs brotttyta finns också fläckar av gråbränd lera som antingen är insmält i slaggen eller sekundärt fastkittad.

Smedjan 7, Fnr 142

Okulär granskning

I fyndposten ingår fyra slaggfragment. Det största väger 71 g och är 43×40 mm i plan. Tjockleken är som mest ca 35 mm. Slaggen har former som antyder att den har stelnat i en ränna snarare än en rundare försänkning. Den är uppbryggd av flera pålagrade, relativt lättflutna slaggflöden (fig. 17) som är något mindre i botten och något större i de övre delarna. Slaggen är mestadels grå med en nästan oljig överyta.

I delat tvärsnitt (fig. 18) framträder de pålagrade slaggsträngarna tydligt. Dessa är mestadels täta men har ett centralt större hårrum. Slaggen förefaller vara homogen i sammansättning.

Undersökning i mikroskop

De okulärt väl synliga slaggsträngarna framträder tydligt även i mikroskop. Slaggen är mycket likartad i sammansättning och kornstorlek i alla slaggsträngar. De består av relativt finkornig olivin, wüstit och en glasfas. Kontakterna (fig. 19) mellan slaggsträngarna definieras av små skillnader i kornstorlek (finkornigare) och en ansamling av små hålrum. Däremot finns inte någon tunn zon av magnetit. Sporadiskt förekommer också små droppar av metalliskt järn.

Slaggen har ett utseende som en vanlig reduktionsslagg, stearinslagg, som har stelnat i slagguppsamlingsutrymme i ugnens nedre del. Den innehåller små droppar av metalliskt järn.

Figur 18. Smedjan 7, Fnr 142 i delat tvärsnitt där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas.

Figur 19. Smedjan 7, Fnr 142. Detalj från mikroskopet, där kontakten mellan slaggflöden syns med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.
Smedjan 7, Fnr 259
Okulär granskning
Oregelbundet slaggfragment med endast en ursprunglig ytterkant.
Troligen del av homogent uppbyggd smidesskål, med en tjocklek över 32 mm.

Figur 20. Smedjan 7, Fnr 485. Smidesskälla i delat tvärsnitt som tydligt visar två lager av slagg med olika sammansättning.

Smedjan 7, Fnr 485
Okulär granskning
I fyndposten ingår två fragment av likartad slagg. Den största väger 333 g, är rund till kantig i plan ca 80×80 mm över på ca 30 mm över i stort sett hela slaggen. På slaggen finns mycket sekundärt fastkittat material runtom vilket gör det svårt att få en uppfattning om ursprunglig form.

Vid delning av den största biten framkommer en slagg som är uppbyggd av två olika skikt (fig. 20). Den nedre halvan består av grå, relativt tät slagg. Den övre utgörs av något ljusare gröngrå slagg med något större porer. På övertyran och lokalt i sprickor finns sekundärt fastkittat material.

Undersökning i mikroskop
Den tydliga skiktning som framträder i tvärsnitt syns tydligt även i mikroskop. I botten finns ett tunt skikt av material som sekundärt har kittert fast i slagg. Över detta finns ett lager av wüstitrik slagg som övergår i olivinrik slagg. Gränsen mellan dessa kantas av sekundära bildningar och det är inte möjligt att se hur kontaktytan primärt har bildats. Allra överst finns ett likartat fastkittat skikt som i botten innehåller såväl sandkorn som kolstycken och glödsaltsfragment. Slagg i den nedre halvan domineras av wüstit som är tämligen grovkornig (fig. 22). Dessutom förekommer en glasfas och relativt rikligt med svampiga bildningar av metalliskt järn. Slagg i den övre delen (fig. 21) är något finkornigare och innehåller långsmala olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan. I den övre delen finns också svampiga bildningar av metalliskt järn.
I det fastkittade bottenskiktet, samt i några bottennära hålrum finns små förekomster av koppar/kopparlegering. Någon sådan har dock inte noterats primärt i slaggen. Här rör det sig möjligt om att slaggen har legat i en miljö där kopparhaltigt material också har funnits.

Figur 21. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slaggen i den övre delen som innehåller långsmala olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan (se nästa figur).

Figur 22. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slaggen som i den nedre halvan domineras av wüstit som är tämligen grovkornig.

Stora Torget C5819:15, WII:12
Okulär granskning
Smidesskålla, nästan komplett, men i två delar (fig. 23). Den är plankonvex även om botten är diffust konvex. Vikt 383 g. Oval i plan med största mått 125 mm och minsta 85 mm. Tjocklek som mest 30 mm.
Sekundärt material finns fastkittat runtom vilket döljer mycket av slaggens detaljer.

I delat tvärsnitt (fig. 24) framträder slaggens karaktär bättre. Den är något skiktad med avseende på porositet, med mer porer i nedre halvan och mindre i övre. Möjligen finns en skillnad i sammansättning som syns i form av ljusare slagg i nedre delen. Lokalt finns små droppar av metalliskt järn, främst i nedre halvan.

Figur 23. Stora Torget C5819:15, WII:12. Nästan komplett smideskålla i två delar.

Figur 24. Stora Torget C5819:15, WII:12 i delat tvärsnitt som visar att slaggen är skiktvis uppbyggd.

Undersökning i mikroskop

Den skiktvisa uppbyggnad som är tydlig okulärt syns i mikroskop med hjälp av skillnader i kornstorlek och kornform (fig. 25). Sambandsättningen är dock homogen i hela slaggens tjocklek. Slaggen består av olivinkristaller, en grövre och en finkornigare, och en glasfas. Lokalt förekommer mycket finkornig järnoxid (magnetit?) tillsammans med de finkorniga olivinkristallerna. Dessutom förekommer en del större, oregelbundna bildningar av metalliskt järn (fig. 26), främst i den nedre halvan. I botten finns också ett fåtal insmältas kolstycken.
Slaget är en homogen, grovkornig, olivinrik smidekassa med större, oregelbundna bildningar av metalliskt järn.

Figur 25. Stora Torget C5819:15, WII:12. Översikt från mikroskopet som visar att slagen består av olvin (ljusare grå) och en glasfas (mörkare) men att det finns skillnader i kornstorlek med grövre korn i den nedre delen.

Fyndback ur Nihlén's samling märkt "22 st järnklumpar"
Okulär granskning
I fyndposten finns del av en plan-konvex smidesskål, troligen oval i form men ursprunglig form är något osäker. Största mått i plan är 120 mm. Tjockleken, som är ursprunglig är 45 mm. Sekundärt material finns fastkittat runtom. Skållan är mestadels omagnetisk men lokalt magnetisk på övertytan.

Fyndback ur Fardelins samling märkt "12 st järnklumpar"
Okulär granskning
I fyndposten finns en nästan intakt konvex-konvex smidesskål. Vikt 593 g, diameter 100 mm, tjocklek 55 mm. Omagnetisk. Mycket sekundärt material finns fastkittat runtom slaggen men i profil framträder en tämligen homogen sammansatt slagg.

Figur 27. TM 16858. Slagg från Stenkumla sn. Två mindre stycken av ursprungligen större slagg med många pålagrade slaggsträngar från en reduktionsslagg.

Slagg från Tekniska museets samling, TM 16858, Stora Homa, Stenkumla sn, från John Nihlén's undersökning 1929
Okulär granskning
Tre fragment från en ursprungligen betydligt större slagg av typen bottenslagg. Slaggen är uppbyggd av flera pålagrade slaggsträngar (fig. 27) som är ljusgrå på ytan. Den är omagnetisk och har kolavtryck. På brottytor framträder en mörkgrå, tämligen tät slagg.

Undersökning i mikroskop
De påbyggda, tunna slaggsträngar som observeras tämligen tydligt okulärt syns även i mikroskop (fig. 28) men inte lika tydligt. Kontakterna är något diffusa men kan anas med hjälp av skillnader i kornstorlek där kontakterna är något finkornigare än mer centrala delar i varje slaggsträng, även om denna också är tämligen finkornig. Slaggen innehåller olivin, wüstit och en glasfas. Proportionerna mellan dessa är något olika i de enskilda slaggsträngarna (fig. 29), men skillnaden är inte speciellt stor även om wüstit nästan saknas i vissa. I slaggsträngarna förekommer också enstaka droppar av metalliskt järn.
Detta utseende är typiskt för reduktionsslaggar. Denna är dock relativt finkornig för karaktäristiska stearinlaggar som har stelnat i ett slagguppsamlingsutrymme, men den saknar den tunna zon av magnetit som vanligtvis bildas om slaggen stelnar utanför ugen. Men, i några av de olivinrikaste slaggsträngarna är det magnetit och inte wüstit som förekommer! Slaggen är från järnframställning, men inte självklart vilken ugnstyp Den innehåller enstaka droppar av metalliskt järn.

Figur 28. TM 16858 från Stenkumla sn. Översikt från mikroskopet som visar tre olika slaggflöden med tydliga kontakter (se även nästa figur).

Tabell 2. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Visby.

<table>
<thead>
<tr>
<th>Kvarter/ gata</th>
<th>Benämning</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweitzer gränd</td>
<td>169</td>
<td>Smidesskälla med koncentration av järn</td>
<td>Järnet: mestadels låg, men något varierandehalhalt. Svampigt och omgivet av slagg.</td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>142</td>
<td>Homogen slagg. Morfologiskt likt reduktionsslagg.</td>
<td>Ser ut som en vanlig reduktionsslagg, stearinsslagg (ol, wu, gl), som har stelnat i slagguppsamlingsutrymme i ugnens nedre del. Små droppar av metalliskt järn.</td>
</tr>
<tr>
<td>Stenkumla sn.</td>
<td>TM 16858</td>
<td>Stearinliknande reduktionsslagg.</td>
<td>Utseende typiskt för reduktionsslagger, men relativt finkornig för karakteristiska stearinsslaggar som har stelnat i ett slagguppsamlingsutrymme, men den saknar den tunna zon av magnetit som vanligtvis bildas om slagg stelnar utanför ugnen. Men, i några av de olivinrinke slaggsträngarna är det magnetit och inte wüstit som förekommer! Enstaka droppar av metalliskt järn.</td>
</tr>
</tbody>
</table>
Lödöse
Slaggerna har benämning efter de delområden som har undersökt på olika tillfällen och som presenterats av Andersson (2010). På kartan (fig. 30) framgår var dessa delområden finns.
Tabell 3. Förteckning över slagger från Lödöse, från Lödöse museum.

<table>
<thead>
<tr>
<th>Område</th>
<th>Benämning</th>
<th>Kommentar</th>
<th>Prov</th>
<th>Datering</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>169</td>
<td>Del av större skålla</td>
<td>T, ICP</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MK</td>
<td>320</td>
<td>Del av skålla (?), avvikande översida</td>
<td>T, ICP</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MK</td>
<td>600</td>
<td>2 små, tunga, platta skållor</td>
<td>P</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MH</td>
<td>136</td>
<td>1 skålla, mot vägg</td>
<td>T, ICP</td>
<td>Ej före 1200</td>
</tr>
<tr>
<td>MG</td>
<td>283a</td>
<td>1 oregelbunden slagklump</td>
<td>T, ICP</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MG</td>
<td>329</td>
<td>1 oregelbunden slagklump</td>
<td></td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MM</td>
<td>572e</td>
<td>1 slagfragment, ej skålla</td>
<td>T, ICP</td>
<td>11-1400-tal</td>
</tr>
<tr>
<td>MM</td>
<td>584e</td>
<td>1 oregelbunden slagklump</td>
<td></td>
<td>11-1400-tal</td>
</tr>
<tr>
<td>ME</td>
<td>2</td>
<td>2 skållor</td>
<td>T, ICP, E</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>ME</td>
<td>3</td>
<td>1 skålla, 1 järnrik klump</td>
<td>P,</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MC</td>
<td>4</td>
<td>SL:MC, 1 stor skålla</td>
<td>T, E</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>16</td>
<td>SL:MC, skålla mot vägg</td>
<td>P, T, ICP</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>18</td>
<td>SL:MC, 1 skålla</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>19</td>
<td>SL:MC, 3 skållor</td>
<td>T, ICP (av nr 1)</td>
<td></td>
</tr>
</tbody>
</table>

I kolumnen "Provtyp" har noterats vilka som har analyserats ytterligare. T = tunnslip för prov som undersöks petrografiskt, ICP = prov som analyserats med totalkemiska analyser, P= polerprov som undersöks metallografskt, E= prov som har analyserats med elektronmikroskop.

MK, FnR 169

Okulär granskning

I delat tvärnitt är slaggen mycket homogent upbyggd (fig.32). Enstaka hållrum finns nära kanterna men i övrigt är slaggen tät. Enstaka inslag av insmält silikatrakt material finns nära överytan. Trots det ärggröna området i brottytan kan inget metalliskt kopparhaltigt material observeras med blotta ögat på tvärnittsytan.

Undersökning i mikroskop
Slaggen är tämligen homogent upbyggd och domineras av grovdendritisk wüstit. Olivin och en glasfas förekommer i betydligt mindre mängd (fig. 33). Proportionerna mellan de ingående mineralen varierar dock något nerifrån och uppåt utan några väl definierade gränser. Lokalt förekommer droppar av koppar (fig. 34), men inget metalliskt järn har observerats.
I mikroskala saknar denna slagg drag som är karaktäristiska för smidet, speciellt föremålssmide. På slaggens yta synes grönärgade områden som mycket riktigt påvisar innehåll av metallisk koppar. Dessa förekomster är dock endast mikroskopiska och kan ej observeras med blotta ögat.

Figur 31. MK, Fnr 169, fragment av smidesskål med ett grönärgigt inslag.

Figur 32. MK, Fnr 169 i tvärsnitt som visar en mycket homogent uppbryggd slagg.
Figur 33. MK, Fnr 169 i mikroskop. Översikt på den homogena slaggen som domineras av västšt (ljust grå) med olivin och glas i mindre mängd. Små metalldroppar (ljusa) är fåtaliga.

Figur 34. MK, Fnr 169 i mikroskop. Detalj som visar slaggens metalldroppar (ljust röda) som består av koppar.

MK, Fnr 320
Okulär granskning

Den delade tvärsnittsytan uppvisar en mestadels homogen slagg. Diffust kan en skiktvis uppbyggnad anas med hjälp av skillnader i porositet. Små kolstycken finns insmälta i botten och lokalt även högre upp i slaggen.
Undersökning i mikroskop

I mikroskala saknar denna slagg drag som är karaktäristiska för smidet, speciellt föremålssmide.

MK, Fnr 600
Okulär granskning

Järnet är genomgående grovkornigt och mestadels tämligen kolrikt. Till stora delar dominerar perlit (lokalt med lite cementit) men ställvis är kolhalten lägre där ferritandelen är något större.

Figur 35. MK, Fnr 600, smidesskålla 1 i tvärsnitt.
MH, Fnr 136

Okulär granskning

I tvärsnitt (fig. 38) syns en homogen slagg med små, diffusa variationer i porositet, men mestadels tät. Inget metalliskt järn är synligt trots att slaggen är magnetisk på övertytan.

Undersökning i mikroskop

I mikroskop framträder en slagg som består av nästan enbart järnoxider (fig. 39). I stora drag är den homogen även om det finns variationer i vilka järnoxider som förekommer. Mestadels dominerar dendritisk wüstit, men magnetit i är vanligare i vissa partier (fig. 40). Wüstiten visar sig också ha inslag av magnetitsammansättning. Underordnat förekommer silikatrikare faser i form av olivin och en glasfas. Långs kanterna finns en del fastkittat material, bland annat glödskalsliknande fragment. Metalliskt material saknas förutom ett fåtal droppar av järn.

Eftersom metalliskt järn i princip saknas är det magnetit som orsakar skallans magnetism. Vid första granskning i mikroskop förefaller den omagnetiska wüstiten dominerar, men vid närmare granskning ser man att den är komplext uppbyggd med inslag av magnetit och att magnetit också dominerar i vissa delar, vilket märks i form av något starkare magnetism.

Figur 39. MH, Fnr 136 i mikroskop. Översikt på slaggen som domineras av järnoxider, såväl västtit som magnetit (båda ljust grå). Magnetit förekommer som kantigare kristaller (se även nästa figur) och västtit i rundare, mjukare former.
Figur 40. MH, Fnr 136 i mikroskop. Detalj som visar förekomsten av magnetit som kantiga ljusgrå kristaller, omgivna av en grå glasfas.

MG, Fnr 283a

Okulär granskning

Oregelbunden slag (smidesskålla?). Vikt: 135 g. Slaggen är gulbrungrå och har oregelbunden form (fig. 41). Den har kolavtryck och är svagt magnetisk.

Den delade slaggen är homogen och tämligen ljus jämfört med många andra. Den är omgiv en med mycket sekundärt fastkittat material. Slaggen har ingen tydlig ytterform men slaggen förefaller vara av liknande typ som många av de andra slaggerna från samma lokal.

Undersökning i mikroskop

Slaggen är relativt homogent uppbyggd med utseende som är vanligt i reduktionsslag. Den består av finkorniga olivinlameller, dendritisk wüstit och en glasfas. Metalliskt järn förekommer i form av små droppar och något större oregelbundna bildningar.

Figur 41. MG, Fnr 283a, mindre smidesskålla.
MG, Fnr 329
Okulär granskning
Oregelbunden slagg (fig. 42) som är gråbrun och har oregelbunden form och avtryck efter kol. Slaggen är svagt magnetisk.
I tvärsnitt visar det sig att endast en liten del slagg finns bevarad. Slaggen är också omgiven av mycket sekundärt material, även fastkittat.

MM, Fnr 572e
Okulär granskning
Oregelbundet slaggfragment. Vikt: 38 g. Slaggen är gråbrun, har oregelbunden form och är magnetisk. I tvärsnitt syns en slagg som huvudsakligen är homogen men lokalt har inneslutna kolstycken och insmält silikatrikt material.

Undersökning i mikroskop
Slaggen liknar MG283a men är något grövre. Den har också mer sekundära bildningar och insmält glasigt material.

MM, Fnr 584e
Okulär granskning
Oregelbunden slagg med gulbrungrå färg och oregelbunden form. Slaggen har kolavtryck samt ställvis smält material. Den är svagt magnetisk. Ett område med smält material med grå färg är magnetiskt.
I tvärsnitt (fig. 43) framträder en till stora delar homogen uppbyggd, småporig, slagg. Längs botten och delvis langs kanter finns större hålrum och inslag av insmält silikatrikt material.
ME, Fnr 2

Okulär granskning

Figur 43. MM, Fnr 584e, oregelbunden slagg i tvärnitt med mestadels homogent uppbyggd slagg, men avvikande sammansättning i nedre vänstra delen.

Figur 44. ME, Fnr 2, smidesskål 1 i tvärnitt.
Undersökning i mikroskop
Skållan (nr 1) är diffust skiktad (fig. 45). Skikten är ej väl avgränsade utan framträder diffust med hjälp av varierande proportioner mellan de ingående mineralen. I nedre halvan finns också ett skikt som är mer sekundärt påverkat än resten av slaggen. I botten finns också en del fastkittat material. I slaggens alla skikt finns olivin, wüstit och en glasfas. I den nedre delen förekommer också leucit. Droppar av metalliskt järn förekommer i liten mängd i hela slaggen. Droppar av koppar(legering) är också observerade, främst i slaggens övre delar. Möjligens förekommer droppar med en blandning av järn och koppar (fig. 46) i slaggens centrala och nedre delar.
Elektronmikrosondanalys
Analyser med elektronmikrosond på metalldropparna visar att en typ utgörs av en kopparlegering i form av brons med tennhalt på ca 11 %. Metallen innehåller dock även järn (ca 2.5 %, analys ME2_4 i tabell 6). Det finns, som observerats i mikroskop, också komplexa metalldroppar där en del domineras av järn men med några viktprocent koppar (ca 4 %, analys ME2_1-2 i tabell 6) och med spårhalter av kobolt och arsenik. Droppens andra del domineras av brons med järninnehåll med liknande halter som i de homogena dropparna.

ME, Fnr 3
Okulär granskning
Fyndposten består av en smidesskålla samt ett slaggfragment.

Slaggfragmentet har oregelbunden form och har blågrå och gulbrun färg. Vikt: 97 g. Slaggen är magnetisk. I tvärsnitt framträder en koncentration av metalliskt järn, ca 15×7 mm stor, omgiven av slagg och/eller rost.

Koncentrationen av järn har en kolhalt som varierar något; från mestadels perlit till ferrit och perlit. Texturen är genomgående grovkornig.

Figur 47. ME, Fnr 3, smidesskålla i tvärsnitt.
I tvärsnitt framträder en huvudsakligen homogen slagg. Den är dock något skiktad med avseende på porstorlek med omväxlande större och mindre porer. I nedre halvan finns en svampig ansamling av metall som sannolikt är kopparrik (fig. 48).
Undersökning i mikroskop
Slaggen är relativt homogen i sin uppbyggnad och innehåller wüstit, olivin och en glasfas. Den liknar slaggen i ME 2 men har något mer wüstit. Främst i nedre halvan förekommer rikligt med svampiga bildningar av metall som sannolikt är dominerad av koppar men troligen inte ren koppar (fig. 49). Metalliskt järn förekommer i betydligt mindre mängder och enbart som små droppar.

Elektronmikrosondanalys
Analyser med elektronmikrosond på den större metallkonzentrationen bekräftar observationerna i mikroskop om att den består av två olika faser. Den dominerande, kopparrika, är en brons med ca 4 % tenn, knappt 1 % järn samt 0,5 % antimon. Analys över en större yta som omfattar även den kopparfattigare fasen visar att totalt sett innehåller legeringen ca 68 % koppar, drygt 26 % järn och drygt 6 % tenn.

Figur 50. MC, Fnr 16, smidesskål med avtryck mot vägg i höger i bild.

Figur 50. MC, Fnr 16, smidesskål med avtryck mot vägg till höger i bild.

MC, Fnr 16

Okulär granskning
Intakt, plan-konvex smidesskål (fig. 50). Vikt: 2328 g. Formen i plan är oregelbunden (avtryck mot vägg). Skållan är 140 mm i diameter och 80 mm tjock. Ovansidan är ojämn, med ett avtryck mot vägg med smält material samt bränd lera (?). Undersidan är slät. På ovansidan finns kolavtryck, enstaka kolavtryck finns även på undersidan. Skållan har gulbrun färg. Den är svagt magnetisk och partiet med avtryck mot vägg är magnetiskt.

I tvärsnitt (fig. 51) framträder en mycket homogen slagg som huvudsakligen är tät. Ställvis förekommer dock även större porer. I slaggens nedre del finns en ansamling av svampigt metalliskt järn, ca 38 mm bred och 10 mm hög.

Undersökning i mikroskop
Det undersökte tvärsnittet, i skållans nedre halva, är tämligen homogen uppbyggt. Slaggen är tämligen grovkornig och domineras av olivin (fig. 52). Dendritisk wüstit och en glasfas förekommer i mindre mängder.
I de nedre delarna förekommer även leucit sporadiskt. Metalliskt järn förekommer mycket sparsamt och endast som mycket små droppar.

Den större koncentrationen av metalliskt järn domineras av ferrit, möjligen med små nitridnålar lokalt. I järnet finns också inneslutna slagg som är av liknande sammansättning och kornstorlek som i den omgivande slagg, dvs. olivin, glas och järrnöxider

Figur 51. MC, Fnr 16, smidesskållan i tvärsnitt. Nere till höger syns en större koncentration av metalliskt järn.

Figur 52. MC, Fnr 16 i mikroskop. Översikt på slaggens övre delar. Likt många andra slagger innehåller den wüstit, olivin och en glasfas, men mängden olivin är relativt hög.

MC, Fnr 18

Okulär granskning

Intakt, plan-konvex smidesskälla. Vikt: 391 g. Formen i plan är oval. Skällan är 110 mm i diameter och 25 mm tjock. Ovansidan är ojämn och har på ena sidan (fig. 53) en något förhöjd yta med gråbränt och smått material (blästeringång?), undersidan är slät. Kolavtryck finns på

Slaggen är delad parallellt med sidan som sitter mot vägg, dvs. snittet går ej genom den brända laran. I snittet finns en homogent uppbyggd slagg (fig. 54) som är porös i botten och tätare högre upp.

Undersökning i mikroskop
Figur 55. MC, Fnr 18 i mikroskop. Översikt på slaggens nedre delar. Här förekommer wüstit, olivin och glas i något varierande proportioner.

Figur 56. MC, Fnr 19, smidesskålla 1 i tvärsnitt.

MC, Fnr 19

Okulär granskning

Fyndposten består av tre smidesskållor. Den minsta smidesskållan (1) är intakt och konkav-konvex. Vikt: 547 g. Formen i plan är oval. Skållan är 110 mm i diameter och 40 mm tjock. Övansidan är slät och undersidan är relativt slät. Enstaka kolavtryck finns på ovansidan, samt i något större mängd på undersidan. Skållan har rostbrun och gulbrun färg.

Smidesskålla 1 är svagt magnetisk. I tvärsnitt (fig. 56) syns en mestadels homogen slagg med något större porer allra överst, men i övrigt är porerna betydligt mindre. Denna skålla har valts för kemiska analyser och undersökning i mikroskop.

Smidesskålla 2 är svagt magnetisk. I delat tvärsnitt syns att skållan är
uppbyggd av ätminstone två olika material. Nederst förekommer egentlig slagg upp till en höjd som gör skållan plan-konvex. Över detta finns en påbyggnad med mycket sekundärt material, kolstycken och silikataltt material.

Undersökning i mikroskop
Skållan är homogen i sin uppbyggnad och domineras av wüstit. Olivin och glas förekommer i mindre mängd. Olivinkristallerna är zonerade, med avvikande sammansättning i yterkanten av kristallerna. Ett fåtal droppar av metalliskt järn har också observerats.

Tabell 4. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slagorna från Lödöse.

<table>
<thead>
<tr>
<th>Område</th>
<th>Nr</th>
<th>Kommentar</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>169</td>
<td>Del av större skålla</td>
<td>Del av smidesskålla, homogen i tvärsnitt. Tat. Grönärgigt inslag.</td>
<td>Domineras av wu, grovdendritisk, lite ol + gl. Droppar av koppar lokalt! Inget metalliskt järn</td>
</tr>
<tr>
<td>MK</td>
<td>320</td>
<td>Del av skålla (?), avvikande översida</td>
<td>Del av smidesskålla, homogen i tvärsnitt. Något porösare än MK 169</td>
<td>Homogen, wüstitdominerad. Inget metalliskt järn eller koppar.</td>
</tr>
<tr>
<td>MK</td>
<td>600</td>
<td>Skålla nr 2 (av 2)</td>
<td>Skålla nr 2 har centrat en större koncentration av svampigt metalliskt järn</td>
<td>Relativt homogen. Nåstan bara järnoxid, ätminstone magnetit + wüstit, ev. fler. Glödskalsliknande bildningar fastkittade</td>
</tr>
<tr>
<td>MG</td>
<td>329</td>
<td>Oregelbunden slagklump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>572e</td>
<td>Slaggefragment, ej skålla</td>
<td>Oregelbunden slagg. Jfr 283a</td>
<td>Liknar MG283a, något grövre. Mer sekundära bildningar. Mer inmält glasigt material</td>
</tr>
<tr>
<td>MM</td>
<td>584e</td>
<td>Oregelbunden slagklump</td>
<td>Oregelbunden slagg. Mestadels</td>
<td></td>
</tr>
</tbody>
</table>
Kemiska analyser

Analysbakgrund

I den inledande texten om analyser och analysmetoder har vi beskrivit möjligheter och svårigheter med tillämpning av kemiska analysmetoder på smidesslagger. Vi diskuterade också den komplexiteten som ligger bakom hela processkedjan från malm till föremål och de slagger som bildas vid flera av dessa processer och hur slaggerna kan användas i tolkningen av processerna och råvarornas ursprung. För att kunna tolka och utvärdera analysresultaten behandlar vi här ytterligare några förutsättningar.

Smide jämfört med framställning och råvara – en saknad pusselbit

Att analysera smidesslagger för att försöka korrelera med malm och reduktionsslagger medför att det saknas information om ett led och en produkt i kedjan. Under järnframställningsprocessen fördelar sig

<table>
<thead>
<tr>
<th>Område</th>
<th>Nr</th>
<th>Kommentar</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>3</td>
<td>Järnrik klump (även skälla)</td>
<td>Slaggfragment med stor oregelbunden koncentration av metalliskt järn</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>16</td>
<td>Skälla</td>
<td>Skälla, tämligen tjock. Homogen i sammansättning med en större ansamling av metalliskt järn.</td>
<td></td>
</tr>
</tbody>
</table>

I jämförelsematerialet ingår också platser där järnframställningen är äldre än de aktuella städernas slaggar. Dessa har inkluderats ändå eftersom deras kemiska sammansättning, oavsett datering, speglar respektive regions malmer och hur slaggarna som bildas vid användandet av dessa, ser ut ur ett kemiskt perspektiv. Det är också värdefullt att ta med dessa för att se vilken fördelning av kemisk sammansättning som finns inom området, och om det över huvudtaget är realistiskt att försöka urskilja vissa ursprungsområden. Till sist vill vi nämnä att vi inom ramen för denna studie endast har jämfört med material från områden i dagens Sverige.

Analysresultat

Resultat i korthet

Resultaten från analyserna återges i sin helhet i tabellform (tabell 5). Huvudämnenas presenteras enligt konventionellt sätt som oxider, även om järn även har räknats om till FeO även om järnet förekommer i många olika konstellationer. Spårämnen presenteras i en egen del som rena element i mg/kg, också på konventionellt sätt. Koppar har ej ingått i den
använda analysrutinen (se metodtext) men är observerat i flera slagger med hjälp av andra metodier. För att kunna jämföra de olika ämnena har diagram använts där huvud- och eller spårämnen har jämförts parvis. Vi kommer att behandla en del av dem mer ingående nedan.

Ämnen som förekommer i betydligt lägre halter, s.k. spårämnen (nedre delen av tabell 5) kan vara av betydelse för att jämföra slagger med varandra och malmer för att se om det finns ett gemensamt ursprung, och om detta kan kopplas till någon specifik geologisk/geografisk miljö.

Figur 57. Jämförelse av slagternas innehåll av mangan (som MnO) och magnesium (som MgO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och reduktionsslaggen TM16858 (fylld cirkel).
Figur 58. Jämförelse av slaggernas innehåll av fosfor (som P_2O_5) och kalcium (som CaO). I figuren visas även tidigare analyserade slaggar från Visby (se text för referenser) och reduktionsslagen TM16858 (fylld cirkel). Slagg 507 från Kaplanen 8 är ej med i diagrammet.

Ett drag som är utmärkande och genomgående för slaggar från såväl Visby som Lödöse är att de innehåller tämligen låga halter av alla ämnen utom kisel och järn. En del av dem har till och med riktigt höga järnhalter vilket också framgår av den petrografiska undersökningen i mikroskop som wüstitiska slaggar. Sådana höga järnhalter skulle också kunna innebära att slaggerna har tillskott av oxiderat metalliskt järn, vilket i så fall försvårar möjligheten att använda dem som indikatorer på ursprung, eftersom reduktionsslagens och följaktligen malmens signatur då har minskats. De flesta slaggar har dock tolkats som primärsmedesslaggar och använts i de fortsatta tolkningarna.

Manganhalten når inte över 1 viktsprocent MnO i någon av smidesslaggerna (fig. 57). Endast reduktionsslagen från Stenkumla socken på Gotland har högre halter (ca 3 % MnO). De tämligen låga mananhaltarna indikerar följaktligen att det är manganfattiga malmer som har använts, under förutsättning att de analyserade slaggerna till stora delar har ärvit reduktionsslagnas sammansättning. Magnesiumhalten ligger på samma storleksordning, dvs. mestadels några viktsprocent MgO i de allra flesta slaggerna (fig. 57). Även fosforhalten ligger på några tiondels viktsprocent (som P_2O_5) för de flesta slaggerna (fig. 58). I en slagg (MG283a från Lödöse) når den ca 1 %. En slagg från
Visby (Fnr 507 från Kaplanen 8) har emellertid 10 gånger så högt fosforinnehåll. Denna slagg har dock också extremt högt kalciuminnehåll i kombination med lågt järninnehåll och representerar dock inte samma process som de övriga slaggerna och bör inte heller ingå i samma typ av utvärderings arbete.

Spårämnesinnehållet i slaggerna är mestadels också lågt och det finns stora likheter mellan slagger från de båda städerna. En del ämnen förefaller dock skilja sig åt mellan städerna och vi återkommer lite mer detaljerat kring detta genom att specialstudera t.ex. krom och vanadin, liksom de sällsynta jordartsmetallerna.

Resultat i jämförelse med smidesslagger från andra platser

Som framgår av tabell 5 finns många likheter mellan slaggerna i Visby respektive Lödöse, men även mellan de båda städerna. De variationer som uppträder inom Visby motsvaras av en variation av samma storleksordning i Lödöse, även om undantag finns, t.ex. vad gäller fosfor och kalcium. Intressant är därför att också jämföra med slagger av liknande typ, mer eller mindre samtida, huvudsakligen från andra städer.

I figurerna 59–61 kan vi notera att såväl mangan och magnesium som fosfor och kalcium, liksom spårämnen krom och vanadin förekommer i motsvarande låga halter i många av referensslaggerna från smidet.

Figur 59. Jämförelse av slaggernas innehåll av mangan (som MnO) och magnesium (som MgO). Data från figur 57 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.
Figur 60. Jämförelse av slaggernas innehåll av fosfor (som \(P_2O_5\)) och kalcium (som \(CaO\)). Data från figur 58 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.

Två ämnen som skiljer Visbys slagger från Lödöses är kalciuminnehållet, som är högre i slaggerna från Visby, som grupp och fosforinnehållet som generellt är högre i Lödöses slagger. Om vi jämför med smidesslagger från andra områden (fig. 60) ser vi att dessa värden inte är unika utan att det förekommer motsvarande fall även från andra platser.

I diagrammen (fig. 59–60) finns också några analysresultat från slagginsletningar i järn (Buchwald 2008) bland annat från Lödöse. Där framkommer att det finns föremål med slagginsletningar med en sammansättning som markant avviker från de analyserade slaggerna från samma plats, dvs. de visar att det finns flera olika ursprung för järnet på en och samma plats.
Figur 61. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för smidesslagger (se text för referenser). Kromhalten är lägre i slaggerna från Lödöse än i slaggerna från Visby, för samma vanadinhalt.

Resultat i jämförelse med malmer
Bland slaggerna i Visby påträffades, som nämnts i inledningen, också några malmklumpar som av experter bedömts komma från Utö gruvor. Vi har redan diskuterat effekterna av en sådan förekomst för den anmärkningsvärt tidiga gruvbrytningen klumparna indirekt signalerar. Likaså skapar malmförekomsten en inkonsekvens i processleden i smidet i staden med en förväntad samtida hytta som först borde haproducerat ett järn som sedan smiddes vidare – vilket inte är rimligt i sammanhanget. Frågan är om det är möjligt att med hjälp av de kemiska analysresultaten klarlägga detta ytterligare.

bland de senare. De flesta bergmalmer har betydligt högre halter av magnesium, även malmen från Utö, än vad slaggerna har. De limonitiska malmerna sprider över en stor variation i manganinnehållet (även högre än som visas i diagrammet) där de analyserade slaggerna visar låga halter. För fosfor och kalcium (fig. 63) ser vi att slaggerna från Visby uppvisar halter på samma nivå som bergmalmerna vad gäller kalcium, men fosforinnehållet är som regel mycket lågt i bergmaler (undantag från ett område i Dalarna i diagrammet). Malmen från Utö kan inte korreleras med de analyserade slaggerna med utgångspunkt i deras kemiska sammansättning.

Bland spårämnen kan vi inledningsvis notera att uppgifterna i referenser är färre. Bland dem som finns visar några regioner högre halter av t.ex. vanadin (Halland) dels att andra regioner som Skåne och Småland har malmer med likartad krom- och vanadinhalt som de analyserade slaggerna (fig. 64). För de få bergmalmer som har uppgifter om spårämnen är kromhalten mestadels låg medan vanadininnehållet är av samma storleksordning som i de analyserade slaggerna.

En detalj att ha i åtanke när man jämför spårämnen är att en del av dessa ämnen fördelar sig mellan slagg och järn, en del koncentreras i slaggen medan ytterligare andra företrädesvis hamnar i järnet. Till de senare hör t.ex. kobolt, nickel, krom och vanadin. Det har dock tidigare visat sig (t.ex. utvärdering av GALs databas) att de förekommer i varierande halter även i slagger varför ett högt innehåll av någon av dem visar att ämnet även måste ha funnits i förhållandevis höga halter även i malmen.
Visby
Gotland
Lököse
Limonitisk malm Småland (ej Mg i ref, Mn >1)
Limonitisk malm Halland
Limonitisk malm Skåne
Limonitisk malm Östergötland
Bergmalm Uppland
Bergmalm Västmanland
Bergmalm Dalarna

Figur 64. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för limonitiska malmer i södra Sverige (se text för referenser), varav några med betydligt högre vanadinninnehåll. Endast ett fåtal bergmaler i referenserna har uppgift om dessa ämnen; i dessa fall med låga halter. Visbys respektive Lököses slagger är schematiskt markerade med en blå respektive röd ring som omfattar de flesta slaggerna från respektive plats. Ett fåtal plotter dock utanför respektive område.

Resultat i jämförelse med reduktionsslager
En förutsättning för att kunna relatera smidesslagger till ursprungsområde är att de också ärver reduktionsslaggernas kemiska sammansättning. Även om det inte är fråga om identiska absoluta halter bör proportionerna mellan flera specifika ämnen bibehållas under processernas gång. Detta kan studeras med hjälp av kvoter mellan ämnen eller i de diagram vi använt ovan genom att se om ämnena är relaterade till varandra i en grupp av slagger, dvs. om ett ämne ökar bör det relaterade ämnet också öka längs en linje i diagrammet. Slagger med kemisk likhet följer då samma linje, medan andra slagger kan följa en linje med annan lutning. Alternativt kan ett ämne variera medan ett annat är mer eller mindre konstant. Eftersom reduktionsslager från järnframställning är de som främst har analyserats i många tidigare undersökningar finns här ett betydligt större referensmaterial och det är möjligt att relatera till detta. Som ett urval kan vi fortsätta att jämföra samma ämnen som vi redan har
belyst, dvs. mangan, magnesium, fosfor, kalcium, vanadin och krom. En kort studie av sällsynta jordartsmetaller kommer också att visas.

Det finns en stor mängd reduktionsslager analyserade och även om det är fördelaktigt med stora datamängder kan det ibland vara svårt att urskilja något i en stor mängd. Vi har valt slagger från stora delar av södra Sverige som jämförelse, oavsett om de är från rätt tidsperiod eller ej (se diskussion ovan) och delat in dem efter landskap. En sådan administrativ inledning är möjligen inte den mest optimala indelningen, men utgör ett bra redskap för att komma vidare i tolkningen.

Exemplet mangan och magnesium

För att ytterligare kunna urskilja om det finns karaktäristiska drag för slagger från olika regioner beskär vi axlarna ytterligare och studerar ett mindre antal landskap i taget. Ett område som har föreslagits som
produktionsområde (se inledningstexten) är Småland. I figurerna 67–71 framgår att det finns skillnader mellan olika områden i Småland, där gränstrakterna med Skåne och Halland inte överensstämmer med slaggerna från Visby eller Lödöse, medan slagger från området söder om Kalmar visar mer likheter. I figurtexerna (fig. 67–71) beskrivs utförligare på vilket sätt slagger från de olika landskapen skiljer sig från, eller har likheter med, de nu analyserade slaggerna från Visby och Lödöse.

Exemplet fosfor och kalcium
På motsvarande sätt som vi har jämfört mangan och magnesium, kan vi studera förhållandet mellan fosfor och kalcium. En första översikt (fig. 72) visar att slaggerna från Visby har ett högt kalciuminnehåll i kombination med lägt fosforinnehåll. Liknande halter förekommer inte mer än i några få reduktionsslaggar från järnframställning i det aktuella referensmaterialet. En möjlig förklaring till detta är att smidesslaggarna i Visby inte direkt kan knytas till reduktionsslaggar från blästugnar, utan bör relateras till andra processer, och/eller att kalcium har tillsatts under processens gång. Slaggerna från Lödöse däremot, har innehåll av kalcium i förhållande till fosfor som förekommer i en stor mängd slagger från flera regioner. I figurtexterna (fig. 73–77) finns mer detaljer kring skillnader och likheter mellan de nu analyserade slaggerna och referensmaterialet.

![Diagram](image_url)

Figur 74. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slagger från Skåne. Slagger från två lokaler (Ö. Spång och Bredabäck) i gränstrakten mot Halland och Småland är markerade med dubbel symbol. Dessa uppvisar liknande sammansättningsintervall som slaggerna från Lödöse. Flertalet av de övriga har tydligt högre fosforinnehåll, även slagger från östra Skåne (Bromölla; ring).

Figur 76. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slagger från Östergötland och Närke. En del av slaggerna från båda landskapen uppvisar liknande variation som slaggerna från Lödöse, samtidigt som grupp från Närke avviker med betydligt högre fosforinnehåll.
Exemplet krom och vanadin
Tidigare har vi också jämfört spårämnena krom och vanadin, med förbehållet att dessa ämnen går in även i det tillverkade metalliska järnet. Som berört ovan förekommer det dock slagger med tämligen höga vanadinhalter – flera hundra mg/kg – varför förekommer släende även i slagger. I figur 78 ser vi exempel på det från Småland, främst Markarydsområdet, men även närliggande områden i Skåne samt från Halland. En stor andel slagger har dock betydligt lägre vanadininnehåll, av samma storleksordning som slaggerna från Visby och Lödöse, och många har en liknande variation i krominnehåll. Ett fåtal slagger från Östergötland uppvisar dock ett betydligt högre krominnehåll.

I figurexterna (fig. 79–83) återges jämförelserna med slagger från de olika landskapen mer detaljerat. Jämförelsematerialet är något reducerat eftersom en del äldre analyser inte har inkluderats dessa ämnen.
Figur 78. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från figur 61 samt referensdata för reduktionsslagger huvudsakligen från sydligaste Sverige, men även exempel från Dalarna och Gästrikland. Diagrammet visar att många slagger är koncentrerade kring halter under 100 mg/kg krom och under 400 mg/kg vanadin. Ett fåtal slagger från Östergötland har högre krominnehåll. Från Småland, Skåne och Halland finns ett antal slagger med betydligt högre vanadininnehåll. Många av dessa kommer från närliggande platser i gränstrakterna mellan landskapen. Den nu analyserade reduktionsslaggen från Gotland har också tämligen högt innehåll av vanadin. I följande diagram visas slagger från ett eller ett fåtal landskap åt gången för att lättare kunna urskilja eventuella skillnader och likheter.

Exemplet sällsynta jordartsmetaller
Andra ämnen som förekommer i slaggerna är de sällsynta jordartsmetallerna (lantan (La) till lutetium (Lu)). De förekommer i låga halter och har, sannolikt, ingen effekt på processen eller järnet, men är användbara ur ett annat perspektiv. De sällsynta jordartsmetallerna följer varandra som grupp och har därmed förväntad inbördes positiv korrelation, och är knutna till olika geologiska miljöer. Några ämnen kan dock vara anrikade, eller urläkade, i förhållande till de andra. Detta gäller bland annat cerium (Ce) som då sägs visa en positiv eller negativ anomali jämfört med övriga. Likaså kan relationen mellan gruppen av tyngre (med högre atomnummer, Ga-Lu, HREE) respektive lättare jordartsmetaller (med lägre atomnummer, La-Sm, LREE) spegla skillnader i anrikning och urläkning ibildningsmiljö. Dessa proportioner förväntas också åervas av slaggerna i järnframställningsprocessen. Smidesslagger som är uppbryggda av slagg från tidigare processled kan därmed förväntas ha samma proportioner. Om metalliskt järn har bidragit till slaggernas sammansättning kan det sänka det totala innehållet av sällsynta
jordartsmetaller eftersom metallen är fattigare på dessa ämnen. Om tillsättning av t.ex. sand har använts kan detta också spåda ut den absoluta halten av de sällsynta jordartsmetallerna, men denna effekt har vi ovan ansett vara marginell. Därför bedömer vi det som rimligt att försöka använda även de sällsynta jordartsmetallerna som ett hjälpmedel. Om vi inledningsvis jämför två av de lätt sällsynta jordartsmetallerna med varandra, cerium och lantan, ser vi att slagorna visar en förväntad ökad ceriumhalt för ökad lantanhalt, men att förhållandena inte är identiska (fig. 84). Med hjälp av två linjer kan vi anta att det finns flera olika, minst två, proportioner mellan de båda ämnen. Om vi jämför resultaten med de reduktionsslagorna vi tidigare har studerat ser vi till att börja med att de absoluta halterna av både cerium och lantan är låga eller mycket låga jämfört med många av slagorna i referensmaterialet (fig. 85). Dessutom finns flera proportioner mellan de båda ämnen, som även här kan illustreras med två schematiskt dragna linjer. Om vi studerar ett utsnitt av diagrammet med ett urval av slagorna (fig. 86) kan vi se att slagorna från Östergötland och Småland följer båda linjerna. Slagorna från Halland och Västergötland förefaller väsentligen följa linjen med flackast lutning, den linje som också merparten av slagorna från Visby och Lödöse följer.

Figur 85. Jämförelse av slagornas innehåll av de sällsynta jordartsmetallerna lantan och cerium. Slagorna från Visby och Lödöse har låga eller mycket låga absoluta halter av både cerium och lantan jämfört med många av slagorna i referensmaterialet.
Figur 86. Detalj ur föregående figur med ett urval av slagger för jämförelse, utan de aktuella slaggerna från Visby och Lödöse. Liksom i figur 84 visar två schematiska linjer skillnader i proportioner mellan cerium och lantan. Slagger från Småland och Östergötland finns längs båda linjerna medan slagar från Västergötland mestadels följer linjen med flackast lutning.

Skillnaderna mellan linjerna kan beskrivas i en annan typ av diagram (fig. 87–88) där samtliga sällsynta jordartsmetaller plottas. På konventionellt sätt har de absoluta halterna normaliserats mot ett referensprov. Till vänster i diagrammet, som ämne nummer två förekommer cerium (Ce; nr 58) som kan följa linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, eller visa en topp (positiv anomali) eller nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali. Det senare gäller för alla slaggern. För cerium ser vi dock skillnader mellan slaggerna där några har en positiv anomali av olika grad, andra nästan ingen anomali alls och ett fåtal en svag negativ anomali. Det innebär att det inte är möjligt med en och samma leverantör

Järnsmide i Visby och Lödöse 83
av järnet utan flera är nödvändiga. I detalj (fig. 88) ser vi att positiv anomali förekommer i slagger från både Visby och Lödöse.

Slager med positiv anomali i detta diagram motsvarar de med brantast lutning i figuren 84–86. Den variation i huvudämnen och spårämnen som vi tidigare har noterat gäller för de båda städerna, framträder följaktligen även i de sällsyyta jordartsmetallerna. Ett resultat som ger stöd till tolkningen om att det finns flera produktionsområden som har levererat järnet som smiddes vidare.

Figur 87. Sällsyynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slager följer linjen från det första ämnet lantlut (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europrium (Eu; nr 63) som visar en negativ anomali för alla slager.

Figur 87. Sällsyynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slager följer linjen från det första ämnet lantlut (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europrium (Eu; nr 63) som visar en negativ anomali för alla slager.

Sammanfattning och utvärdering av de kemiska analyserna

Med hjälp av de ovanstående diagrammen och jämförelserna med olika områden kan vi göra några sammanfattande utvärderingar där en del områden uppvisar konsekvent likhet eller skillnad med utgångspunkt i de jämförda ämnena. Andra områden ger en mindre tydlig bild där några ämnena visar stor likhet, medan andra visar att ett järnproduktionsområde som vid en första anblick förefaller rimligt, är mindre troligt med utgångspunkt i andra ämnena.

Om vi lägger till resultaten av jämförelsen av spårelementsinnehållet kan vi notera att de slagger från gränsområdet mellan Småland, Skåne och Halland som har avvikande innehåll vad gäller huvudämnen mangan, magnesium och fosfor också tydligt skiljer sig från slaggerna från Visby och Lödöse vad gäller innehållet av spåraämnen, framförallt vanadin. För mangan, magnesium och fosfor var detta tydligt för slaggerna främst på skånska och småländska sidan om gränsen, från tidig medeltid och framåt, medan de halländska visar mer överensstämmelse i fråga om dessa ämnen. När även spåraämnen är inkluderade i jämförelsen ser vi att även dessa skiljer sig från Visbys och Lödöses slager. Här ska vi dock ha i åtanke att det finns slagger från Halland som inte har analyserats med avseende på spårelementsammansättningen varför detta kan behöva undersökas ytterligare.

Bland övriga slagger från Skåne har vi berört bland annat de östra delarna, med främst slagger från äldre järnålder i Bromölla där stora likheter finns vad gäller innehållet av mangan, magnesium, krom och vanadin, men skillnader finns vad gäller fosforinnehållet.

Slagger från Västergötland som ingår i referensmaterialet är visserligen huvudsakligen äldre eller betydligt äldre än materialet från de undersökt städerna men visar många likheter i fråga om kemisk
sammansättning. Med tanke på att det också finns järnframställning av yngre datum vore det intressant att analysera slagg från denna produktion för att se om det finns motsvarande överensstämmelser där. Däremot finns det inte korrelation med slagg från en tidig masugn i Hyttelhamn längs Vätterns västra strand.

Vi har också jämfört med slagg från Närke och Östergötland som avviker i större omfattning från slaggerna från Lödöse och Visby. Det finns variationer i slaggmaterialet från båda dessa landskap och variationerna är till viss del mycket lokala. Bland annat finns det slagg från samma socken i Närke som skiljer sig markant åt vad gäller innehåll av såväl huvudämnen som spårämnen. Även om ett fåtal slagg från dessa landskap visar likheter med slaggerna från Visby och Lödöse (ett fåtal) så förefaller området vara mindre intressant som ursprungsområde.

Även slagg från områden längre norrut har i korthet ingått i jämförelsen. Här finns slagg från såväl äldre som yngre järnåldern och variationerna är till viss del mycket lokala. Bland annat finns det slagg från samma socken i Närke som skiljer sig markant åt vad gäller innehåll av såväl huvudämnen som spårämnen. Även om ett fåtal slagg från dessa landskap visar likheter med slaggerna från Visby och Lödöse (ett fåtal) så förefaller området vara mindre intressant som ursprungsområde.

Tolkning och diskussion

Undersökningen och analyserna av slaggerna från smidet i Visby och Lödöse har visat en del förväntade resultat men också en del oväntade observationer som har inneburit alternativa tolkningsmöjligheter och förslag till detaljer i järnhantverks processer som inte vanligen omtalas.

Slaggernas morfologi

Från flera kvarter i Visby har vi analyserat slagg av formmässigt två huvudtyper. Den ena är de så karakteristiska plankonvexa smidesslaggerna. En del är visserligen inte helt plana på övertan utan är något konkava eller konvexa, men är ändå av samma typ. Den andra typen av slagg är oregelbundna strängflutna slagg där flera tunna slaggflöden överlagrar varandra. Detta utseende ser vi främst inom järnframställningen, antingen som de karakteristiska stearinformade
slagger som samlas i blästugnarnas slaggropar, rakt under lunpen, eller de slagger som tappas ut ur ugnen under järnframställningen. För dessa var det viktigt att avgöra vilket processled de kommer från. Som referens till Visbys slagger, analyserade också en slagg från järnframställning under järnålder. Denna slagg kommer från Stenkumla socken på Gotland.

Från Lödöse gjorde vi ett urval som i princip enbart omfattade de karaktäristiska skållorna. Det är dock viktigt att påpeka att andra slagtyper saknades i materialet i museets magasin. Övrigt material omfattade främst järnrika klumpar och smält keramiskt material, dvs. inget av det är slagger. Om det bevarade materialet i museets magasin är representativt för vad som har funnits eller om de karaktäristiska skållorna prioriterades vid de arkeologiska undersökningarna är inte känt.

Skållor av olika storlek förekommer, möjligen relaterat till olika delområden i staden men denna fråga har inte utretts specifikt i denna undersökning. Det finns dock slagger från Lödöse som är större än de vi har analyserat från Visby. Den största i Lödöse är ca 210 mm i diameter och 60 mm tjock, men flera kring 100–130 mm i diameter förekommer också. De största från Visby är ca 120 mm, i något fall 155 mm i diameter.

I dokumentation kring slaggerna i Lödöse nämns flera termer som leder tankarna till järnframställning; t.ex. bottensmältor, myrmalmstackor, gropugnar och "lerugnar för järnutvinning". Det finns dock inget bevarat material i magasinen som tyder på att det rör sig om järnframställning.

Processled – primärsmide

Bland de slagger som har analyserats mer detaljerat gör vi tolkningen att de kommer från primärsmide, ett smide där slaggförande järnluppar från blästugnar har rensats på slagg. Rensningen har inneburit en urmältning av slagg som blivit innesluten i metallen under framställningsprocessen. Sammansättningsmässigt liknar denna slagg därför re duktionsslagger varför de uppstålda frågeställningarna kring att söka ursprung bedöms vara rimliga att gå vidare med.

Flera av de analyserade skållorna är tämligen homogent uppbyggda, med en sammansättning lik re duktionsslagger. Några av dem uppvisar dock detaljer som indikerar smide, t.ex. olivinkristaller med olika sammansättning i kärnan och ytterkanten vilket uppstår när temperaturen varierar. Andra har skikt av järnoxiden magnetit, som bildas istället för wüstit när tillgången på syre är större, vilket den är i en smideshärd jämfört med i en blästugn.

Möjligna ska vi inte förvänta oss några större slaggmängder från sekundärsmedet i detta sammanhang. Den tolkningen kan diskuteras
utifrån förloppet under primärsmitet. Troligen har tämligen stora järnluppar, inte klarlagt vilken form, rensats på slagg. Rensningen har sannolikt varit så omfattande att den resulterat i ett tämligen slaggfritt järn, som, när det i sin tur ska formas till föremål, inte genererar så stora mängder slagg.

Process – detaljer (slaggavrinning)

Koppar och brons i slaggerna

I flera slagger, såväl från Visby som från Lödöse, kunde vi observera förekomst av koppar, eller kopparlegering i större eller mindre omfattning. Koppadroppar är inte det första man förväntar sig och i en smidesslagg, snarare är det metalliska järn som kan förekomma. Koppar visade sig förekomma i några olika varianter. I något fall observerade vi förekomst av såväl järn- som koppadroppar (varje metall separat, t.ex. nr 307 från Schweitzergränd). I andra fanns enbart droppar av koppar (nr 507 från Kaplanen 8), ytterligare andra innehöll komplexa droppar med både järn och koppar (nr 2315 från Priorn 11). Fenomenet visade sig vara tämligen frekvent och förekommer i slagger från flera kvarter/delområden (fig. 1). Även tidigare analyser av slagger från Visby
har noterat liknande förekomster (Kresten 1995) av koppar från flera kvarter men också brons (från Priorn 4).

För att utreda dropparnas sammansättning mer exakt analyserades ett fåtal. Från Visby noterades förekomst av koppar med innehåll av järn (få procent) liksom järn med innehåll av koppar. Kopparens sammansättning är i storleksordningen densamma som räkoppar har, dvs. innan kopparen har garats för att renas en sista gång.

I slagernas från Lödöse är det, enligt de detaljerade analyserna av två av dem, brons med tennhalt på ca 6 respektive 10 procent som förekommer. Möjligen finns andra sammansättningar bland dem som inte har analyserats.

Det tidigare omnämnda smidet vid Lundströms Plats i Jönköping uppvissade också förekomst av koppardroppar i slaggen (Grandin 2009). Även från Sigtuna har koppar, med liknande järninnehåll, samt brons noterats i smidesskållor från medeltid (Hjärthner-Holdar & Larsson 1997).

Men, är det rimligt när det rör sig om primärsmedian slagg som bildats när en slaggförrande lupp har rensats på sin slagg. Här måste andra möjligheter diskuteras. En av dem leder oss till ursprunget på järnet vad gäller malm och eventuellt kopparinnehåll. I blästjärnstillverkningen är det främst sjö- och myrmalmor eller rödjord som har använts och dessa är mestadels mycket låga vad gäller kopparhalt varför detta inte är en trolig förklaring. Alternativet att det är en bergmalm som har använts och att denna är kopparhaltig kan vi också diskutera kring. De bergmalmor som har använts i järnföremakten är järnoxider, medan kopparmalmorerna i Sverige huvudsakligen är sulfidmalmer, med innehåll av både koppar och järn. Sulfidmalmer har dock inte prioriterats i järnföremäkten, av flera anledningar. Teoretiskt skulle vi kunna tänka oss att kopparförkomsten i slagerna har sitt ursprung i malm, men i de fall det förekommer brons i slaggen är detta inte något alternativ. I kopparmalmer finns visserligen flera spårämnen som vi kan se i analyserna (t.ex. antimon), men tenn ska vi inte förvänta oss. Förkomsten av bronsdroppar i slagorna kan därmed inte förklaras med kopparförkomst i den använda järnmalmen.

Kan vi istället tänka oss tillsättning av koppar/brons vid något skede av processen? Och i så fall av vilken anledning? Vid
Järnframställningsexperimenten vid Nya Lapphyttan i Norberg har man som rutin att tillsätta koppar i små mängder, något eller några tiotals gram, i forman när man observerar att slaggen börjar “frysa”. När koppar har tillsatts flyter slaggen lättare och separeras bättre från metall. Är det samma fenomen som har skett i smidet, inte bara i Visby och Lödöse, utan även på andra platser? Med tanke på att slaggarna, speciellt i Visby, har runnit lätt och det förefaller som om smideshärden har tappats på slag har det varit viktigt att kunna kontrollera slaggens flytbarhet. Om lupporna har varit stora och för att slaggrensningen ska fortgå har möjligen tillsättning av koppar i forman underlagt denna process. I samband med experiment in Nya Lapphyttan är det endast små mängder som används, men det får stor effekt. I Visby ser vi mestadels mikroskopiska droppar. Totalhalten koppar är inte känd i just dessa slagger men i tidigare analyserade smidesslagger med observerad koppar varierar det totala kopparinnehållet från 0,03 till 0,08 % CuO, (Kresten 1995). Om denna tolkning är rimlig förefaller det inte ha spelat så stor roll vilket typ av koppar som har använts utan det är snarare tillgången på material som har styr. I Visby har det funnits råkoppar såväl som brons. I Lödöse, med sitt omfattande kopparlegeringsarbete, har det knappast varit brist på brons.

Ursprunget

De analyserade slaggarna från Visby och Lödöse är samtliga tämligen rena i sin sammansättning, dvs. de har låga halter av många spårämnen. På så sätt är det möjligt att utesluta de områden som har högre halter av dessa ämnen som möjliga leverantörer. Intressant nog uppvisar slaggarna från de båda städerna likartad variation i sin sammansättning, även om enstaka undantag finns.

I jämförelserna och diskussionerna i analyskapitlet ovan har vi huvudsakligen betraktat Lödöse och Visby som en grupp eftersom det finns variationer i de båda städernas slagger som delvis täcker samma intervall. Det finns dock en del som också skiljer dem åt, t.ex. kalciuminnehållet som är markant högre i slaggarna från Visby. Ett annat ämne som skiljer de båda städernas slagger från varandra är krom, med något högre halter i Visbys slaggar. Genomgående finns det dock slagar från Lödöse som visar stora likheter med gruppen av slagger från Visby och tvärtom. Detta resultat tyder på att det inte finns enbart en leverantör av järn till respektive ort. Möjligen kan vi se dominans från ett område till Lödöse respektive Visby, samtidigt som andra sammansättningar tyder på att det funnits tillgång även till annat material. De skillnader om föreligger ger en starkare koppling mellan slagger från Västergötland samt Jönköpingsområdet och Lödöse. Skånska och smålandska slagger i övrigt som uppvisar likheter med de nu analyserade slaggarna, gör det

Områden som dock inte är rimliga produktionsområden är gränstrakterna mellan Skåne, Småland och Halland där det finns dokumenterad och välundersökt järnframställning från tidig medeltid och framåt och av kronologiska skäl skulle kunna vara tänkbart. Järnframställningsområden i Östergötland och Närke, med medeltida blästjärnsproduktion i det senare, förefaller inte heller vara rimliga järnleverantörer till vare sig Visby eller Lödöse.

Till sist är det viktigt att komma ihåg att referensmaterialet är begränsat. Dels är det avgränsat till järnframställningsområden inom dagens Sverige, dels är det beroende av vilka områden som är undersökta och i vilken mån som analyser har gjorts. Betydligt fler områden är kända, men inte undersökta på samma detaljnivå. Det innebär att även om det finns möjliga områden som har koppling till Lödöse och/eller Visby i det använda referensmaterialet finns det möjlighet att det rör sig om andra produktionsområden, med idag okända sammansättningar på malmer och slagger, som har levererat järn till de båda städerna.

Smidet i Visby och Lödöse i sammanfattning

- Slaggerna representerar huvudsakligen primärsmide, där luppar har rensats på slagg
- Järnet är ursprungligen blästjärn, från sjö-/myrmalm (mindre troligt bergmalm)
- Lupparna kan ha varit stora och smideshärden konstruerad för slaggappning
- Koppar/brons har tillsatts som en del i processen för att underlätta slaggens flytbarhet för att separera den från järnet.
- Den järnframställning som omnämnas i handlingar, främst i Lödöse, finns ej belägg för i slaggmaterialet
- Det finns inga belägg för att malm från Utö har använts för järnframställningen som ligger till grund för smidet i Visby
- Järnet har kommit till de båda städerna från flera leverantörer
Tabell 5. Totalkemisk analys av slaggar från Visby och en från Gotland i övrigt (TM16858). Den första delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligen återgivet som Fe₂O₃ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.

<table>
<thead>
<tr>
<th>Prov P 2315</th>
<th>P 2478</th>
<th>K 507</th>
<th>Sch 307</th>
<th>A 54</th>
<th>Sm 142</th>
<th>Sm 485</th>
<th>St T CS819</th>
<th>TM16858</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34,0</td>
<td>25,3</td>
<td>32,6</td>
<td>15,9</td>
<td>27,4</td>
<td>21,4</td>
<td>9,86</td>
<td>32,1</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,118</td>
<td>0,0938</td>
<td>0,175</td>
<td>0,0570</td>
<td>0,0967</td>
<td>0,0535</td>
<td>0,136</td>
<td>0,183</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3,40</td>
<td>2,86</td>
<td>3,62</td>
<td>1,65</td>
<td>2,44</td>
<td>2,06</td>
<td>3,20</td>
<td>4,04</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>61,3</td>
<td>74,4</td>
<td>25,1</td>
<td>85,1</td>
<td>69,3</td>
<td>81,1</td>
<td>87,3</td>
<td>59,6</td>
</tr>
<tr>
<td>MnO</td>
<td>0,135</td>
<td>0,710</td>
<td>0,313</td>
<td>0,175</td>
<td>0,0967</td>
<td>0,0535</td>
<td>0,136</td>
<td>0,186</td>
</tr>
<tr>
<td>MgO</td>
<td>0,474</td>
<td>0,530</td>
<td>1,58</td>
<td>0,268</td>
<td>0,711</td>
<td>0,286</td>
<td>0,515</td>
<td>0,500</td>
</tr>
<tr>
<td>CaO</td>
<td>0,427</td>
<td>0,958</td>
<td>0,152</td>
<td>0,268</td>
<td>0,175</td>
<td>0,0967</td>
<td>0,0535</td>
<td>0,136</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,548</td>
<td>0,427</td>
<td>0,710</td>
<td>0,313</td>
<td>0,276</td>
<td>0,111</td>
<td>0,638</td>
<td>0,518</td>
</tr>
<tr>
<td>K₂O</td>
<td>1,29</td>
<td>1,13</td>
<td>1,82</td>
<td>0,268</td>
<td>0,268</td>
<td>0,111</td>
<td>0,638</td>
<td>0,518</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0,186</td>
<td>0,399</td>
<td>10,7</td>
<td>0,305</td>
<td>0,387</td>
<td>0,249</td>
<td>0,436</td>
<td>0,453</td>
</tr>
<tr>
<td>Glödförlust</td>
<td>-5,40</td>
<td>-6,70</td>
<td>-3,10</td>
<td>-4,10</td>
<td>-6,30</td>
<td>-7,90</td>
<td>-5,80</td>
<td>-4,70</td>
</tr>
<tr>
<td>Summa</td>
<td>102</td>
<td>102</td>
<td>96,8</td>
<td>101</td>
<td>102</td>
<td>101</td>
<td>101</td>
<td>102</td>
</tr>
<tr>
<td>FeO</td>
<td>50,3</td>
<td>60,9</td>
<td>19,8</td>
<td>72,9</td>
<td>56,7</td>
<td>65,9</td>
<td>73,4</td>
<td>49,4</td>
</tr>
</tbody>
</table>

Be Sc V Cr Co Ni Ga Rb Sr Y Zr Nb Mo Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Th U
Tabell 5. Totalkemisk analys av slagger från Lödöse. Den första delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligen återgivet som Fe$_2$O$_3$ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.

<table>
<thead>
<tr>
<th>Prov</th>
<th>MK169</th>
<th>MK320</th>
<th>MH136</th>
<th>MG283a</th>
<th>MM572e</th>
<th>ME2_1</th>
<th>MC16</th>
<th>MC18</th>
<th>MC19_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>17,7</td>
<td>16,1</td>
<td>6,01</td>
<td>24,0</td>
<td>19,4</td>
<td>27,0</td>
<td>26,8</td>
<td>12,1</td>
<td>8,19</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,140</td>
<td>0,102</td>
<td>0,0459</td>
<td>0,139</td>
<td>0,118</td>
<td>0,172</td>
<td>0,134</td>
<td>0,0846</td>
<td>0,0698</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>3,55</td>
<td>3,39</td>
<td>1,47</td>
<td>4,12</td>
<td>3,31</td>
<td>4,57</td>
<td>2,83</td>
<td>2,02</td>
<td>1,39</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>78,1</td>
<td>83,3</td>
<td>95,5</td>
<td>72,1</td>
<td>76,7</td>
<td>64,1</td>
<td>69,5</td>
<td>87,3</td>
<td>93,2</td>
</tr>
<tr>
<td>MnO</td>
<td>0,857</td>
<td>0,360</td>
<td>0,158</td>
<td>0,216</td>
<td>0,158</td>
<td>0,240</td>
<td>0,473</td>
<td>0,181</td>
<td>0,119</td>
</tr>
<tr>
<td>MgO</td>
<td>0,852</td>
<td>0,603</td>
<td>0,576</td>
<td>0,690</td>
<td>0,584</td>
<td>0,955</td>
<td>0,583</td>
<td>0,789</td>
<td>0,367</td>
</tr>
<tr>
<td>CaO</td>
<td>3,55</td>
<td>3,39</td>
<td>1,47</td>
<td>4,12</td>
<td>3,31</td>
<td>4,57</td>
<td>2,83</td>
<td>2,02</td>
<td>1,39</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0,820</td>
<td>0,718</td>
<td>0,282</td>
<td>1,26</td>
<td>0,619</td>
<td>1,50</td>
<td>0,784</td>
<td>0,477</td>
<td>0,241</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1,96</td>
<td>1,57</td>
<td>0,837</td>
<td>2,79</td>
<td>1,10</td>
<td>3,19</td>
<td>2,25</td>
<td>1,23</td>
<td>0,760</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0,812</td>
<td>0,515</td>
<td>0,259</td>
<td>1,01</td>
<td>0,481</td>
<td>0,876</td>
<td>0,418</td>
<td>0,358</td>
<td>0,206</td>
</tr>
<tr>
<td>Glödförlust</td>
<td>-6,40</td>
<td>-7</td>
<td>-6,30</td>
<td>-4,90</td>
<td>-2,80</td>
<td>-4,30</td>
<td>-5,90</td>
<td>-6,70</td>
<td>-5,20</td>
</tr>
<tr>
<td>Summa</td>
<td>101</td>
<td>102</td>
<td>101</td>
<td>104</td>
<td>101</td>
<td>102</td>
<td>101</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>FeO</td>
<td>64,5</td>
<td>68,7</td>
<td>80,3</td>
<td>60,5</td>
<td>66,5</td>
<td>53,8</td>
<td>57,2</td>
<td>72,5</td>
<td>79,2</td>
</tr>
<tr>
<td>Be</td>
<td>3,63</td>
<td>6,56</td>
<td>3,75</td>
<td>3,09</td>
<td>2,87</td>
<td>2,70</td>
<td>2,98</td>
<td>3,52</td>
<td>3,76</td>
</tr>
<tr>
<td>Sc</td>
<td>2,09</td>
<td>13,1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2,04</td>
<td>2,22</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>V</td>
<td>78,7</td>
<td>179</td>
<td>48,7</td>
<td>43,5</td>
<td>57,9</td>
<td>46,1</td>
<td>66,3</td>
<td>50,3</td>
<td>55,4</td>
</tr>
<tr>
<td>Cr</td>
<td>37,4</td>
<td>38,1</td>
<td>28,0</td>
<td>32,5</td>
<td>76,7</td>
<td>26,4</td>
<td>25,3</td>
<td>19,2</td>
<td>26,3</td>
</tr>
<tr>
<td>Co</td>
<td>61,5</td>
<td><6</td>
<td>61,6</td>
<td>24,1</td>
<td>31,5</td>
<td>38,8</td>
<td>89,0</td>
<td>11,2</td>
<td>44,5</td>
</tr>
<tr>
<td>Ni</td>
<td>19,0</td>
<td><10</td>
<td>19,7</td>
<td>14,4</td>
<td>35,1</td>
<td><10</td>
<td><10</td>
<td>10</td>
<td>18,2</td>
</tr>
<tr>
<td>Ga</td>
<td>5,38</td>
<td>3,20</td>
<td>3,14</td>
<td>5,82</td>
<td>12,3</td>
<td>5,49</td>
<td>6,89</td>
<td>16,6</td>
<td>4,88</td>
</tr>
<tr>
<td>Rb</td>
<td>46,6</td>
<td>46,3</td>
<td>21,1</td>
<td>92,1</td>
<td>29,1</td>
<td>77,0</td>
<td>71,4</td>
<td>26,1</td>
<td>22,9</td>
</tr>
<tr>
<td>Sr</td>
<td>169</td>
<td>147</td>
<td>136</td>
<td>213</td>
<td>99,6</td>
<td>265</td>
<td>183</td>
<td>141</td>
<td>55,0</td>
</tr>
<tr>
<td>Y</td>
<td>16,6</td>
<td>152</td>
<td>6,52</td>
<td>14,2</td>
<td>10,9</td>
<td>11,6</td>
<td>8,83</td>
<td>6,12</td>
<td>7,08</td>
</tr>
<tr>
<td>Zr</td>
<td>84,6</td>
<td>105</td>
<td>22,1</td>
<td>97,4</td>
<td>72,4</td>
<td>114</td>
<td>82,0</td>
<td>49,3</td>
<td>49,0</td>
</tr>
<tr>
<td>Nb</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>Mo</td>
<td><6</td>
<td>25,6</td>
<td>26,6</td>
<td><6</td>
<td><6</td>
<td>8,08</td>
<td>11,1</td>
<td><6</td>
<td>15,2</td>
</tr>
<tr>
<td>Ba</td>
<td>501</td>
<td>440</td>
<td>292</td>
<td>538</td>
<td>241</td>
<td>605</td>
<td>526</td>
<td>222</td>
<td>204</td>
</tr>
<tr>
<td>La</td>
<td>18,9</td>
<td>213</td>
<td>5,87</td>
<td>13,0</td>
<td>8,48</td>
<td>11,3</td>
<td>13,1</td>
<td>5,74</td>
<td>6,92</td>
</tr>
<tr>
<td>Ce</td>
<td>66,1</td>
<td>441</td>
<td>19,8</td>
<td>32,4</td>
<td>22,4</td>
<td>27,9</td>
<td>49,5</td>
<td>13,8</td>
<td>19,6</td>
</tr>
<tr>
<td>Pr</td>
<td>5,50</td>
<td>56,2</td>
<td>1,40</td>
<td>3,28</td>
<td>2,01</td>
<td>2,71</td>
<td>3,71</td>
<td><1</td>
<td>1,77</td>
</tr>
<tr>
<td>Nd</td>
<td>19,6</td>
<td>199</td>
<td>5,02</td>
<td>11,5</td>
<td>6,99</td>
<td>9,78</td>
<td>12,9</td>
<td>3,94</td>
<td>6,22</td>
</tr>
<tr>
<td>Sm</td>
<td>3,94</td>
<td>34,1</td>
<td>0,955</td>
<td>2,30</td>
<td>1,38</td>
<td>1,99</td>
<td>2,44</td>
<td>0,823</td>
<td>1,23</td>
</tr>
<tr>
<td>Eu</td>
<td>0,605</td>
<td>5,11</td>
<td>0,139</td>
<td>0,402</td>
<td>0,274</td>
<td>0,380</td>
<td>0,356</td>
<td>0,152</td>
<td>0,149</td>
</tr>
<tr>
<td>Gd</td>
<td>3,38</td>
<td>30,9</td>
<td>0,861</td>
<td>2,16</td>
<td>1,38</td>
<td>1,91</td>
<td>2,02</td>
<td>0,756</td>
<td>1,05</td>
</tr>
<tr>
<td>Tb</td>
<td>0,527</td>
<td>4,53</td>
<td>0,127</td>
<td>0,356</td>
<td>0,220</td>
<td>0,309</td>
<td>0,298</td>
<td>0,116</td>
<td>0,175</td>
</tr>
<tr>
<td>Dy</td>
<td>2,91</td>
<td>23,6</td>
<td>0,669</td>
<td>2,07</td>
<td>1,27</td>
<td>1,85</td>
<td>1,74</td>
<td>0,727</td>
<td>0,954</td>
</tr>
<tr>
<td>Ho</td>
<td>0,625</td>
<td>5,30</td>
<td>0,150</td>
<td>0,477</td>
<td>0,309</td>
<td>0,434</td>
<td>0,379</td>
<td>0,162</td>
<td>0,201</td>
</tr>
<tr>
<td>Er</td>
<td>1,83</td>
<td>14,4</td>
<td>0,423</td>
<td>1,33</td>
<td>0,859</td>
<td>1,22</td>
<td>1,03</td>
<td>0,456</td>
<td>0,599</td>
</tr>
<tr>
<td>Tm</td>
<td>0,268</td>
<td>2,08</td>
<td><0,1</td>
<td>0,199</td>
<td>0,126</td>
<td>0,191</td>
<td>0,170</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>Yb</td>
<td>1,77</td>
<td>13,1</td>
<td>0,372</td>
<td>1,29</td>
<td>0,847</td>
<td>1,27</td>
<td>1,03</td>
<td>0,517</td>
<td>0,573</td>
</tr>
<tr>
<td>Lu</td>
<td>0,267</td>
<td>2,32</td>
<td>0,0789</td>
<td>0,218</td>
<td>0,142</td>
<td>0,193</td>
<td>0,160</td>
<td>0,0739</td>
<td>0,0827</td>
</tr>
<tr>
<td>Hf</td>
<td>2,10</td>
<td>2,70</td>
<td>0,593</td>
<td>2,26</td>
<td>1,69</td>
<td>2,71</td>
<td>2,01</td>
<td>1,16</td>
<td>1,20</td>
</tr>
<tr>
<td>Ta</td>
<td>0,400</td>
<td>0,359</td>
<td>0,121</td>
<td>0,486</td>
<td>0,340</td>
<td>0,559</td>
<td>0,436</td>
<td>0,307</td>
<td>0,206</td>
</tr>
<tr>
<td>W</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
</tr>
<tr>
<td>Th</td>
<td>4,15</td>
<td>14,7</td>
<td>1,30</td>
<td>2,95</td>
<td>2,07</td>
<td>3,07</td>
<td>3,45</td>
<td>1,15</td>
<td>1,52</td>
</tr>
<tr>
<td>U</td>
<td>2,09</td>
<td>16,6</td>
<td>0,519</td>
<td>1,23</td>
<td>0,671</td>
<td>1,08</td>
<td>1,14</td>
<td>0,421</td>
<td>0,604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slagg</th>
<th>Anm.</th>
<th>S</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ag</th>
<th>Sn</th>
<th>Sb</th>
<th>Au</th>
<th>Pb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visby</td>
<td></td>
</tr>
<tr>
<td>2315_1</td>
<td>Fe-dom</td>
<td>0</td>
<td>103,565</td>
<td>0,157</td>
<td>0,03</td>
<td>0,161</td>
<td>0</td>
<td>0,089</td>
<td>0,022</td>
<td>0</td>
<td>0,053</td>
<td>0,065</td>
<td>0</td>
<td>104,142</td>
</tr>
<tr>
<td>2315_2</td>
<td>Cu-dom</td>
<td>0</td>
<td>1,509</td>
<td>0,051</td>
<td>0,08</td>
<td>98,541</td>
<td>0,032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,002</td>
<td>100,215</td>
</tr>
<tr>
<td>507_1</td>
<td>Cu-droppe</td>
<td>0,027</td>
<td>0,288</td>
<td>0,004</td>
<td>0,106</td>
<td>97,421</td>
<td>0</td>
<td>0,172</td>
<td>0,395</td>
<td>0,033</td>
<td>0,38</td>
<td>0,009</td>
<td>0,217</td>
<td>99,052</td>
</tr>
<tr>
<td>507_2</td>
<td>Tyngre del</td>
<td>0,083</td>
<td>0,693</td>
<td>0,123</td>
<td>0,036</td>
<td>4,109</td>
<td>0</td>
<td>0</td>
<td>1,036</td>
<td>0,067</td>
<td>0,118</td>
<td>0</td>
<td>70,54</td>
<td>76,805</td>
</tr>
<tr>
<td>Lödöse</td>
<td></td>
</tr>
<tr>
<td>ME2_1</td>
<td>Fe-dom del</td>
<td>0,008</td>
<td>99,316</td>
<td>0,232</td>
<td>0,137</td>
<td>3,619</td>
<td>0,021</td>
<td>0,203</td>
<td>0,066</td>
<td>0</td>
<td>0,051</td>
<td>0,076</td>
<td>0</td>
<td>103,729</td>
</tr>
<tr>
<td>ME2_2</td>
<td>Fe-dom del</td>
<td>0,011</td>
<td>97,645</td>
<td>0,264</td>
<td>0,032</td>
<td>4,526</td>
<td>0</td>
<td>0,112</td>
<td>0,054</td>
<td>0</td>
<td>0</td>
<td>0,282</td>
<td>0</td>
<td>102,926</td>
</tr>
<tr>
<td>ME2_3</td>
<td>Cu-dom del</td>
<td>0,142</td>
<td>4,119</td>
<td>0,007</td>
<td>0,213</td>
<td>87,172</td>
<td>0</td>
<td>0,172</td>
<td>0</td>
<td>9,799</td>
<td>0</td>
<td>0,065</td>
<td>0</td>
<td>101,689</td>
</tr>
<tr>
<td>ME2_4</td>
<td>Homogen</td>
<td>0,183</td>
<td>2,593</td>
<td>0,041</td>
<td>0,087</td>
<td>87,091</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11,003</td>
<td>0,112</td>
<td>0</td>
<td>0,172</td>
<td>101,282</td>
</tr>
<tr>
<td>ME2_5</td>
<td>Kompl.</td>
<td>0</td>
<td>97,467</td>
<td>0,313</td>
<td>0,084</td>
<td>4,664</td>
<td>0,085</td>
<td>0</td>
<td>0</td>
<td>0,192</td>
<td>0</td>
<td>0,134</td>
<td>0</td>
<td>102,939</td>
</tr>
<tr>
<td>MC4_1</td>
<td>Matrix</td>
<td>0,005</td>
<td>0,854</td>
<td>0,05</td>
<td>0,107</td>
<td>94,73</td>
<td>0</td>
<td>0,085</td>
<td>0,103</td>
<td>4,01</td>
<td>0,466</td>
<td>0</td>
<td>0,126</td>
<td>100,536</td>
</tr>
<tr>
<td>MC4_2</td>
<td>Medel</td>
<td>0,083</td>
<td>26,258</td>
<td>0,103</td>
<td>0,123</td>
<td>68,414</td>
<td>0,021</td>
<td>0,064</td>
<td>0,026</td>
<td>6,251</td>
<td>0,145</td>
<td>0,050</td>
<td>0,075</td>
<td>101,612</td>
</tr>
</tbody>
</table>
Referenser

GAL:s analysdatabas
Administrativa uppgifter

Riksantikvarieämbetets projektnummer: 11786.
Underkonsulter: ALS Scandinavia, MINOPREP, CEMPEG.
Digital dokumentation: förvaras på UV Mitt.
Foton: Lena Grandin och Mia Englund.
Figurer

Figur 2. PRIORT 11, smidesskållan Fnr 2315 i tvärsnitt.

Figur 3. PRIORT 11, Fnr 2315 i mikroskop. Översikt på homogen slagg som består av olivin (ljust grå) och en mellanliggande glasfas (mörkare grå).

Figur 4. PRIORT 11, Fnr 2315. Detalj från mikroskopet på förekomst av droppar av metalliskt koppar (ljust röda). I bilden syns också inneslutna kolstycken (nedre delen).

Figur 5. PRIORT 11, slaggen Fnr 2478 i tvärsnitt med tydligt urskiljbara slagsträngar.

Figur 6. PRIORT 11, Fnr 2478. Översikt från mikroskopet. Slagsträngarna urskiljs med hjälp av tunna ljusa band av magnetit och skillnader i kornstorlek (finast närmast kontaktna).

Figur 7. PRIORT 11, Fnr 2478. Detalj från mikroskopet på tunn zon av finkornig järnoxid längs kanten. Överst även ljusa magnetitkristaller, längre ned som dendritisk wüstitt.

Figur 9. Schweizergränd, Fnr 78, del av en smidesskålla, sedd i profil.

Figur 12. Schweizergränd, Fnr 307 i mikroskop. Översikt på homogen slagg som är relativt grovkornig och innehåller wüstitt (ljus), olivin och glas.

Figur 15. Abboten 1, Fnr 54. Översikt från mikroskopet på slagg som domineras av olivin (ljust grå) och en glasfas (mörkare grå). Wüstitt förekommer i mindre mängd (tunna ljusa formationer).

Figur 16. Abboten 1, Fnr 54. Detalj från mikroskopet som visar att olivinkristallerna är zonerade, dvs., deras yttersta kant (mörkare grå; se pil) har en avvikande sammansättning.

Figur 18. Smedjan 7, Fnr 142 i delat tvärsnitt där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas.

Figur 19. Smedjan 7, Fnr 142. Detalj från mikroskopet, där kontakten mellan slaggflöden syns med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.

Figur 22. Smedjan 7, Fnr 485 i mikroskopet. Översiktsbild på slaggens två delar där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas. Kontakten mellan slaggflöden syns med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.

Figur 24. Stora Torget C5819:15, WII:12 i delat tvärsnitt som visar att slaggens två delar är skiktvis uppbyggda.

Figur 27. TM 16858. Slagg från Stenkumla sn. Två mindre stycken av ursprungligen större slagg med många pålagrade slaggsträngar från en reduktionslagg.

Figur 31. MK, Fnr 169, fragment av smidesskålla med ett grönärtigt inslag.

Figur 32. MK, Fnr 169 i tvärsnitt som visar en mycket homogen uppbyggd slagg.
Figur 33. MK, Fnr 169 i mikroskop. Översikt på den homogena slaggen som domineras av wüstit (ljust grå) med olivin och glas i mindre mängd. Små metalldroppar (ljusa) är fåtaliga.

Figur 34. MK, Fnr 169 i mikroskop. Detail som visar slaggens metalldroppar (ljust röda) som består av koppar.

Figur 35. MK, Fnr 600, smidesskålla 1 i tvärsnitt.

Figur 36. MK, Fnr 600, smidesskålla 2 i tvärsnitt.

Figur 39. MH, Fnr 136 i mikroskop. Översikt på slaggen som domineras av järnoxider, såväl wüstit som magnetit (båda ljust grå). Magnetit förekommer som kantigare kristaller (se även nästa figur) och wüstit i rundare, mjukare former.

Figur 40. MH, Fnr 136 i mikroskop. Detalj som visar förekomsten av magnetit som kantiga ljus grå kristaller, omgivna av en grå glasfas.

Figur 41. MG, Fnr 283a, mindre smidesskålla.

Figur 42. MG, Fnr 329, oregelbunden slagg.

Figur 43. MM, Fnr 584e, oregelbunden slagg i tvärsnitt med mestadels homogent uppbyggd slagg, men avvikande sammansättning i nedre vänstra delen.

Figur 44. ME, Fnr 2, smidesskålla 1 i tvärsnitt.

Figur 45. ME, Fnr 2 i mikroskop. Översikt på slaggens centrala delar. I hela slaggen förekommer olivin, wüstit och en glasfas. I bilden ses tydligt en skillnad mellan mer wüstit i den nedre delen och mindre i den övre.

Figur 47. ME, Fnr 3, smidesskålla i tvärsnitt.

Figur 49. MC, Fnr 4 i mikroskop. Översikt där slaggen innehåller stor ansamling av metall. Slaggen innehåller wüstit, olivin och en glasfas. Analyser visar att metallen är en kopparlegering som innehåller både tenn och järn samt spår av antimon.
Figur 50. MC, Fnr 16, smidesskålla med avtryck mot vägg till höger i bild.

Figur 51. MC, Fnr 16, smidesskållan i tvärsnitt. Nere till höger syns en större koncentration av metalliskt järn.

Figur 52. MC, Fnr 16 i mikroskop. Översikt på slaggens övre delar. Likt många andra slagger innehåller den wüstit, olivin och en glasfas, men mängden olivin är relativt hög.

Figur 53. MC, Fnr 18, smidesskålla med avtryck efter förmodad blästeringång i bildens övre del.

Figur 54. MC, Fnr 18, smidesskållan i tvärsnitt.

Figur 55. MC, Fnr 18 i mikroskop. Översikt på slaggens nedre delar. Här förekommer wüstit, olivin och glas i något varierande proportioner.

Figur 56. MC, Fnr 19, smidesskålla 1 i tvärsnitt.

Figur 57. jämförelse av slaggernas innehåll av mangan (som MnO) och magnessium (som MgO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och redaktionsslaggen TM16858 (fylld cirkel).

Figur 58. jämförelse av slaggernas innehåll av fosfor (som P₂O₅) och kalium (som CaO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och redaktionsslaggen TM16858 (fylld cirkel). Slagg 507 från Kaplanen 8 är ej med i diagrammet.

Figur 59. jämförelse av slaggernas innehåll av mangan (som MnO) och magnessium (som MgO). Data från figur 57 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.

Figur 60. jämförelse av slaggernas innehåll av fosfor (som P₂O₅) och kalium (som CaO). Data från figur 58 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.

Figur 61. jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för smidesslagger (se text för referenser). Kromhalten är lägre i slaggerna från Lödöse än i slaggerna från Visby, för samma vanadinhalt.

Figur 63. jämförelse av slaggernas innehåll av fosfor (som P₂O₅) och kalium (som CaO). Data från figur 58 samt referensdata för malmer (se text för referenser).
Bergmalmer varierar generellt i kalciumsammansättning, längs x-axeln, medan de limonitiska malmerna varierar i fosforinnehåll längs y-axeln. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring. Axlararna har utökats för att täcka en större mängd referensdata.

Figur 64. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för limonitiska malm i södra Sverige (se text för referenser), varav några med betydligt högre vanadininnehåll. Endast ett fåtal bergmalmer i referenserorna har uppgift om dessa ämnen; i dessa fall med låga halter. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring som omfattar de flesta slaggerna från respektive plats. Ett fåtal plotter dock utanför respektive område.

men varierande manganinnehåll. Det förekommer dock slaggar med lägt manganinnehåll även från Västergötland.

Figur 74. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slaggarne från Skåne. Slaggar från två lokaler (Ö. Spång och Bredabäck) i gränstrakten mot Halland och Småland är markerade med dubbel symbol. Dessa uppvisar liknande sammansättningssintervall som slaggarne från Lådöse. Flertalet av de övriga har tydligt högre fosforinnehåll, även slaggarne från östra Skåne (Bromölla; ring).

Figur 76. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slaggarne från Östergötland och Närke. En del av slaggarne från båda landskapen uppvisar
liknande variation som slaggerna från Lödöse, samtidigt som grupp från Närke avviker med betydligt högre fosforinnehåll.

Figur 78. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från figur 61 samt referensdata för reduktionsslager huvudsakligen från sydligaste Sverige, men även exempel från Dalarna och Gästrikland. Diagrammet visar att många slager är koncentrerade kring halter under 100 mg/kg krom och under 400 mg/kg vanadin. Ett fåtal slager från Östergötland har högre krominhalt. Slager från Småland, Skåne och Halland finns ett antal slager med betydligt högre vanadinhall, vilket skiljer dem från slaggerna från Lödöse. De flesta slaggerna från Gästrikland ligger dock inom samma intervall som slaggerna från Lödöse.

Figur 86. Detalj ur föregående figur med ett urval av slager för jämförelse, utan de aktuella slaggernas innehåll av lantan och cerium. Slager från Visby och Lödöse har låga eller mycket låga absoluta halter av både cerium och lantan jämfört med många av slaggerna i referensmaterialet.

Figur 87. Sällsynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slager följer linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali för alla slager.

Tabellförteckning

Tabell 1. Förteckning över slagger från Visby, från Gotlands museum samt en från Stenkumla sn på Gotland, från Tekniska museet.

Tabell 2. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Visby.

Tabell 3. Förteckning över slagger från Lödöse, från Lödöse museum.

Tabell 4. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Lödöse.

Tabell 5. Totalkemisk analys av slagger från Lödöse. Den första delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligt återgivet som Fe₂O₃ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.

UV GAL RAPPORT 2012:12
GEOARKEOLOGISK UNDERSÖKNING

Järnsmide i Visby och Lödöse

Arkeometallurgisk undersökning av slagger
Gotland, Visby, fornlämnning 107:1
Västergötland, St Peders socken, Lödöse, fornlämnning 23:1

Lena Grandin, Eva Hjärthner-Holdar och Mia Englund
Järnsmide i Visby och Lödöse

Arkeometallurgisk undersökning av slagger
Gotland, Visby, fornlämning 107:1
Västergötland, St Peders socken, Lödöse, fornlämning 23:1
Dnr 424-0149-2010

Lena Grandin, Eva Hjärthner-Holdar och Mia Englund
Innehåll

Sammanfattning .. 7
Abstract .. 8
Inledning ... 9
 Bakgrund .. 9
 Slagger som indikatorer på hantverk och proveniens ... 9
 Liknande undersökningar ... 10
Analyser – metoder och möjligheter ... 10
 Järn från blästugn eller masugn? .. 11
 Primärsmide/färrskat järn och/eller sekundärsmide! .. 11
Proveniens .. 11
Undersökningens förutsättningar ... 12
 Visbys slagger .. 12
 Malmfynd i Visby ... 15
 Lödöses slagger ... 16
Metod .. 17
 Okulär granskning ... 18
 Petrografisk undersökning ... 18
 Metallografisk undersökning .. 19
 Elektronmikrosondanalyser ... 19
 Totalkemiska analyser ... 19
Resultat .. 20
 Visby ... 21
 Priorn 11, Fnr 2315 ... 21
 Priorn 11, Fnr 2478 ... 23
 St Clemens 4, Fnr 780530 .. 25
 Kaplanen 8, Fnr 507 .. 25
 Kaplanen 8, Fnr 1278 .. 26
 Gräbroder, Utan nummer .. 26
 Schweizergränd, Fnr 78 ... 27
 Schweizergränd, Fnr 169 .. 27
 Schweizergränd, Fnr 288 ... 28
 Schweizergränd, Fnr 304 .. 28
 Schweizergränd, Fnr 307 .. 35
 Abboten 1, Fnr 54 .. 30
 Abboten 1, Fnr 153 ... 32
 Smedjan 7, Fnr 138 ... 32
 Smedjan 7, Fnr 142 ... 32
 Smedjan 7, Fnr 259 ... 34
 Smedjan 7, Fnr 485 ... 34
 Stora Torget C5819:15, WII:12 ... 35
 Fyndback ur Nihlén samling märkt “22 st järnklampur” 38
 Fyndback ur Fardelins samling märkt “12 st järnklampar” 38
Sammanfattning

Undersökningen och analyserna har visat en del förväntade resultat men även en del oväntade observationer har gjorts som har lett till nya tolkningar om detaljer i järnhantverkets processer.

Ett urval för analys gjordes med utgångspunkt i tidigare publikationer och dokumentationsmaterial kring slagger i de båda städerna. Bland uppgifterna fanns indikationer om att såväl järnföring som smide ägde rum i Lödöse. Dessutom har det spekuleras i att bergmalm från Utö gruvor i Södermanland, som påträffades som enstaka klumpar bland slagger i Visby vid undersökningar på 1920-talet, använts för att tillverka järnet som smiddes i Visby.

Bland resultaten kan vi lyfta fram följande:

- Slaggerna representerar huvudsakligen primärsmide, där luppar har rensats på slagg
- Järnet är ursprungligen blästjärn, från sjö-/myrmalm, mindre troligt från bergmalm
- Lupparna som smiddes kan ha varit stora och smideshärden konstruerad för slaggtappning
- Den järnframställning som omnämns i handlingar, främst i Lödöse, finns det ej belägg för i slaggmaterialet
- Det finns inga belägg för att malm från Utö har använts för järnframställningen som ligger till grund för smidet i Visby
- Järnet har kommit till de båda städerna från flera leverantörer

Sedan tidigare är det känt att järnproduktionen i Sverige under vikingatid och medeltid var tämligen stor med en troligen gynnsam konjunktur men att olika områden har olika höjdpunkter i sin produktion. En slutsats som man kan dra från den nu genomförda studien förefaller ge stöd för detta och att man köpte järn där tillgång fanns och att järnhandeln var tämligen välutvecklad. Detta medför också att det dessutom fanns ett, för sin tid, välutvecklat distributionsnät för järn och att man inte enbart införskaffade järn från de mest närliggande produktionsområdena.
Abstract

Iron has played a crucial role for the formation of the Swedish Medieval state. In his research, Hans Andersson has also discussed iron as a driving force for the early urbanisation (2010, 2011). On his commission, GAL has now made archaeometallurgic analyses on slags from the two Medieval towns Visby and Lödöse to study some fundamental issues regarding smithing and forging, as what type of iron that was worked in the towns – blooms or bars – and whether it is possible distinguish iron production areas that delivered the metallic iron.

The study partly presents expected results as that the majority of the material comprises typical plano-convex slags in both towns, but also more unexpected observations allowing for new interpretations regarding details in the iron working processes.

The selection of slag samples for analyses were based on previous publications and various documentation and their information that indicated that iron smelting as well as smithing took part in Lödöse. Furthermore, discussion have been vivid regarding a few lumps of magnetite ore the was provenanced to Utö mines south of Stockholm and that these were used in the iron production for the iron forged in Visby.

A few brief results from this study are:

• The majority of the slags from both Visby and Lödöse represent primary smithing of iron blooms
• The iron is most probably produced in bloomery furnaces run on limonitic ores, less likely rock ores.
• The blooms that were cleansed might have been large and the hearths might accordingly have been constructed for tapping of slag (Visby)
• The iron production that is indirectly indicated in documentation from Lödöse can not be verified by the characteristic’s of the slags that all are smithing slags
• There are no evidence that the suggested magnetite ore from the Utö mine was smelted and used for further smithing in Visby
• Several iron production areas seem to have accounted for the iron supply to Visby as well as to Lödöse

As already previously known, iron production was extensive during the Viking and Medieval times in Sweden, but fluctuated from region to region. The results from this study give further support to this and that iron was acquired where it was available. The iron trade seems to have been well established in distribution networks making it possible to buy iron not only from the spatially nearest production areas.
Inledning

Bakgrund

För att få mer kunskap kring smidet i Visby och Lödöse och deras järndistribution har därför arkeometallurgiska analyser av ett urval av slagger från de båda städerna utförts.

Undersökningen har genomförts med ekonomiskt bidrag från Kungliga Vitterhets Historie och Antikvitets akademien.

Vi vill rikta ett stort tack till Gotlands museum i Visby och Lödöse Museum för all hjälp och vänligt bemötande samt för tillstånd att få prova slagger för analys.

Slagger som indikatorer på hantverk och proveniens

Slagger från såväl järnframställning som smide är viktiga indikatorer för det hantverk de representerar. Deras yttre former såväl som uppbyggnad i mikroskala och kemisk sammansättning kan ge information om använd råvara och dess ursprung, typ av metallhantverk samt produktens beskaffenhet.

Typ av smide kan ses ur flera perspektiv. Vanligen skiljer man primärsmede från sekundärsmede. Vid primärsmedet utgår smeden från en mer slaggrik råvara som behöver rensas och kompakteras innan den smids vidare. Sekundärsmedet, också kallat föremållsmedet, utgår från en
renare råvara t.ex. från en slaggrensad och kompakterad lupp och/eller olika typer av ämnesjärn vilka har varit i fokus i många andra sammanhang. Att skilja mellan dessa båda smidestyper innebär därför inte bara en direkt bestämning av processtyp utan indirekt ger det besked om i vilken form som järnet köpts in eller funnits tillgängligt. Behovet av primärmide indikerar samtidigt att det är ett blästjärn och inte ett masugnsjärn som varit utgångspunkt. Att konstatera tillverkningsprocess är således viktigt i en brytningstid mellan två olika järnframställningstekniker.

Slaggernas uppbyggnad och deras kemiska sammansättning är grundläggande faktorer för att kunna urskilja de områden som järnet tillverkats i, dvs. varifrån malmen kommer. Frågan kring att hitta metalls ursprung, med hjälp av olika naturvetenskapliga analyser, har ofta diskuterats inte minst inom järnforskningen. För tillfället är den mer aktuell än någonsin i takt med att analys- och utvärdingsmetoder kontinuerligt förfinas. Flera projekt har initierats inom Skandinavien och Geoarkeologiskt Laboratorium samarbetar med Kulturhistorisk Museum i Oslo kring att besvara frågor om det norska järnets proveniens under yngre järnålder och medeltid (Grandin 2009a, Grandin m.fl. 2010, Bill m.fl. 2011). För tillfället planeras det också för ett sameuropeiskt projekt i proveniensfrågor där metodutveckling står i fokus. Här finns det följaktligen en stor möjlighet att med hjälp av slaggmaterialet från Visby och Lödöse, samt de presumtiva proveniensområdena, kunna vara en del av denna utveckling. Även om man inte med säkerhet kan säga varifrån malmen kommit så kan man med större säkerhet fastställa varifrån den inte kan ha kommit.

Det är väsentligt för den fortsatta diskussionen att bestämma karaktären på smidet i dessa två städer. Om det går att föra diskussionen om proveniens vidare skulle vi få ett betydelsefullt redskap för att vidareutveckla frågor kring hur järnproduktionen och järndistributionen var organiserad och därmed kunna stärka studierna om järnets roll för den medeltida urbaniseringen.

Liknande undersökning

Analyser – metoder och möjligheter

För att kunna belysa ovanstående problemställningar har en arkeometallurgisk pilotstudie nu utförts för att besvara några grundläggande frågor kring smidan i Visby och Lödöse. I dessa ingår
morfologisk granskning av slagger för att få en första inblick i deras uppbyggnad. Ett mindre urval har undersökts i mikroskop för att få en detaljerad information om uppbyggnad och använda tekniker. Dessa slagger har också analyserats med avseende på kemisk sammansättning där resultaten ligger till grund för att söka efter råvarans proveniens.

Järn från blästugn eller masugn?

Primärsmede/färskat järn och/eller sekundärsmede!
Järn som tillverkas i blästugn innehåller ofta slagg som behöver rensas bort innan föremålssmidet kan påbörjas. Detta görs i det så kallade primärsmedet under det att masugsjärnet oftast färskas vid hyttoplatsen för att bli smidbart, vilket gör att primärsmedesslagger saknas. Förekomst av slagger från primärsmedesprocessen bidrar följaktligen även med kunskap kring framställningsteknik. Det är dock inte alltid helt lätt att särskilja primärsmedesslaggerna från sekundärsmedesslaggerna vilket slaggerna i Visby och Lödöse gjorde oss klart uppmärksamma på.
Slaggernas yttre former och innehål av annat material kan också återspeglar smidshärdenz järnproduktion. Metalldroppar från andra metallrövta kan också vara en indikation på att man vid sekundärsmedet använt sig av sådana för bland annat inläggningar.

Proveniens
förutom det eftertraktade järnet, speglar den geologiska omgivning som de har bildats i och följaktligen finns det regionala skillnader som beror på berg- och jordarternas sammansättning. Under malmens väg från råvara till föremål följer dessa ämnen med i processerna och fördelar sig mellan slagg och metall och genom att hitta ämnen som är signifikanter i vissa områden finns det möjligheter att hitta provenienens.

Det är också betydelsefullt för analyserna att kunna välja slagger från främst primärsmidet då där finns mindre av sekundära inblandningar och dessa följaktligen mest liknar reduktionsslager utifrån ett kemiskt perspektiv. När man väljer slagger från sekundärsmidet måste man välja sådana som inte har för omfattande inblandning av annat material, t.ex. via tillsatser som inte härstammar från malmens sammansättning.

I detta sammanhang är det av stor vikt att det finns analyser även av slagger från järnframställningen i de presumtiva tillverkningsområdena att jämföra med.

Mängden och kvalitén på tillgängliga data varierar dock kraftigt från område till område. En del äldre analysdata innehåller dessutom oftast endast ett fåtal huvudämnen, t.ex. järn, kisel och kalcium, men det är vanligen ämnen som förekommer i betydligt lägre halter, s.k. spårämnen som är mest specifika för olika regioner. Optimalt bör även slaggerna från förmodade produktionsområdena vara samtida med smidet för en jämförelse. Visserligen kan samma malmtyper ha använts även i framställning under äldre järnålder än senare inom en region men utvinningsprocessen och hur olika ämnen fördelas i mellan slagg och metall kan skilja sig åt.

Undersökningens förutsättningar

Visbys slagger

I Gotlands museums samlingar finns slagger från flera arkeologiska undersökningar och slagger har påträffats i varierande omfattning. I, och i anslutning till, Smedjegatan finns några av de större förekomsterna. Mindre omfattande slaggförekomster finns även längre sydöst ut, i området vid Stettinergränd–Hästgatan–Schweitzergränd, och som ligger i 1100-talsbebyggelsens sydöstra utkant, med bl.a. kvarteren Gräbrodern och Abboten. Vi har gått igenom allt slaggmaterial som finns i samlingarna på Gotlands museum och karaktäriserat det översiktligt.
Bland slagglor i Tekniska museets samlingar finns ett fåtal från Gotland. Några av dem är reduktionsslagglor av betydligt äldre datum (järnålder?) än slagglorna från Visby.

Förfrågningar har också gjorts till Sveriges Geologiska Undersökning (SGU) eftersom statsgeolog H. Hedström omnämns av Nihlén (1927) som en av dem som karaktäriserat främst malmklumpar, men även annat material från undersökningen. Hos SGU finns en del dokumentation om Hedström och hans arbete på Gotland, men inget material. Inte heller Naturhistoriska Riksmuseet (NRM) har vare sig material från denna Nihlén's undersökning eller uppgifter om var det kan finnas eller ha funnits. Undersökningen i sig är dock känd även hos NRM, bland annat eftersom N. Zénzen vid NRM också granskade malmklumparna från Visby.

Det finns anteckningar i Tekniska museet om att slagglor från Visby skall ha funnits i magasinen men om detta kan ha varit Smedjegatsslagglorna eller ej går inte att utröna då inga slagglor eller närmare beskrivningar av plats och fynd finns i arkiven på Tekniska Museet.

koppar/kopparlegeringshantverk under det att ut mot och i Smedjegatan tog järnslaggen helt överhanden. Inga medeltida lager fanns kvar i kvartersmarken men i botten på schaktet fanns, vad som beskrivs som ett ugnsfundament med okänd funktion vilket dateras till 1200-tal (Nydolf 2005:30 a.a.).

Ett urval har gjorts för mer detaljerade genomgångar och efterföljande analyser. Eftersom inga slagger stod att finna nära Smedjegatan i Visby, som vi inledningsvis hade prioriterat, har urvalet av slaggar kommit att koncentreras till intilliggande kvartersmark vid Smedjegatan. En hel del av detta material har framkommit under senare tids undersökningar.

I Tekniska Museet fanns några reduktionslaggar. På Gotland finns järnframställning från förromersk järnålder och framåt men inte i stora

Malmfynd i Visby

vad gäller flera ämnen, men att det låga innehållet av magnesium i slaggerna från Visby talar mot ett släktskap med Utö-malmen.

Malmfynden och diskussionen om reduktion av malm i Visby (eller dess närhet) är intressant ur flera aspekter. Dels är naturligtvis proveniensfrågan av betydelse, dels frågan om vilka processled som har genomförts. Om man ska försöka knyta Utö-malmen till slaggerna i lagren i Smedjegatan och andra kvarter måste man komma ihåg att det är främst smidesslagger som har observerats. Det innebär att vi saknar ett processled (Se bakgrundstexten ovan), dvs. reduktion av malm. Som vi nämnt ovan har bergmalmer dessutom huvudsakligen smälts i masugnar och inte blästugnar, även om undantag finns, varför det är en helt annan framställningsprocess som avses. Även Nihlén berör denna tanke, men något försiktigt (1927).

Lödöses slagger

Det är främst i de norra stadsdelarna som järnantering har registrerats. En expansion av stadsområdet, norr om åarmen, anses ha skett på 1200-talet, kanske i samband med att klostret etablerar sig, efter 1243. Men med tanke på en del tidiga dateringar i materialet verkar det som om man haft viss verksamhet/bostäder redan under 1100-talet.

Järnhantering finns främst i de norra stadsdelarna, i det som benämns M, även om inslag av annan metallhantering förekommer. Områden som domineras av koppar- och kopparlegeringshanteringen är belägna i öster. Slag verkar tyvärr inte ha samlats in systematiskt förrän under 1970-talets början.

En intressant företeelse är att härder endast påträffats i områden med smedjor. Järnsmedjor och smedjor för kopparlegering samt gjuterier förekommer blandat med bostäder och det omnämns också att de påträffade lämningarna visar att man även skulle ha reducerat malm till järn. I undersökningsområdena finns bl.a. uppgifter om ”brandgropar” eller ”gropugnar” i MH samt fynd av ”myrmalstackor” i ME. Här förekommer också uppgifter om ”lerugnar” i MK som då också skulle vara ugnar för framställning av järn. I MF påträffades en byggnad innehållande en lerpall med hård tolkat som en smedja. Runt alla dessa anläggningar fanns stora mängder slag. Det äldsta skedet för järnhanteringen i Lödöse är 1100-talets slut och har påträffats i MK. I övrigt verkar slaggkroppen härstamma i huvudsak från 1200−1400 (Andersson 2010:93ff a.a. litt.).

Inga analyser, i modern tid, förefaller ha genomförts av slagger från Lödöse men Buchwald har analyserat slaggneslutningar i tre nitar, från 1300-talet. Han föreslår att dessa, utifrån sina kemiska sammansättningar, där två av dem har höga manganhalter, kan ha tillverkats av myrmalmer i Västergötland eller Halland (2008:54).

Metod

Varje utvald slag har därefter delats och ett utsnitt har slipats och polerats för undersökningar i mikroskop. Slaggerna analyserades även med totalkemiska analysmetoder där alltifrån huvudkomponenter som
järn och kisel till ämnen i spårhalter som kobolt och nickel kvantifierades.

För ett fåtal slagger har kompletterande kemiska analyser genomförts med elektronmikrosond för att bestämma sammansättning på inneslutna kopparlegieringar.

I några slagger noterades koncentrationer av metalliskt järn. Dessa undersöktes metallografiskt för att bestämma jarnets sammansättning och uppbyggnad, som ett led i analysen att urskilja processled och hur järnet bearbetats.

Analysdata presenteras också med hjälp av olika diagram där det inledningsvis kan konstateras om slaggerna från respektive stad uppvisar likartade drag eller om skillnader finns. I nästa tolkningssteg relateras analysvärdena till tillgängliga referensdata för att se om någon korrelation föreligger till något eller några av de hypotetiska områdena.

Okulär granskning

Okulär granskning görs av samtliga fyndposter som valts ut för att karakterisera dem så noggrant och detaljerat som möjligt. Är det enbart smide som har ägt rum på platsen eller finns det tecken på andra processer och i så fall vilka? Vilket eller vilka led i smidet är det, är det primärsomite från lupparslaggrika ämnesjärn eller sekundärsomite från slaggfria ämnesjärn? Slaggernas uppbyggnad ger indikationer om detta och också om hur smideshärden kan ha varit utformad.

Petrografisk undersökning

Av 19 slagger tillverkades tunnslip (av MINOPREP, Hunnebostrand) av så stora ytor som möjligt av deras tvärsnitt för att kunna få en detaljerad bild av det processled de representerar och hur processen fungerat. Petrografiska undersökningar utfördes i genomfallande och påfallande (planpolariserat) ljus för att identifiera materialets olika komponenter och texturella drag. Undersökningen gjordes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digitalkamera.

Slagger består huvudsakligen av olivin, wüstit och glas. Vanliga inslag är också hercynit, magnetit, leucit, limonit och metalliskt järn. Olivin är ett silikatmineralt med den allmänna formeln A_2SiO_4, där A oftast är järn (fayalitisk sammansättning) men mangan, magnesium och kalcium kan förekomma i mindre mängder. Wüstit, FeO, är också ett mycket vanligt inslag i slagger från blästbruken. Om höga koncentrationer av wüstit förekommer är slaggens totala järnhalt vanligtvis också hög. Glas utgör slaggernas ”restsmälta” och kan därför variera kraftigt i sammansättning beroende på vilka mineral som tidigare kristalliserat, slaggernas total-sammansättning och avkylningsförlopp. Magnetit, Fe$_3$O$_4$, kan förekomma i stället för wüstit om temperatur och/eller syretryck är högre. Ett mineral som kan förekomma i slagger med relativt höga aluminiumhalter är hercynit, FeAl$_2$O$_4$. Höga aluminiumhalter i kombination med höga kaliumhalter återfinns i leucit, KAlSi$_2$O$_6$, som i vissa slagger kan förekomma i stället för den vanligare glasfasen. Droppar av metalliskt järn, några mikrometer stora, är också vanligt inslag i slagger från
reduktionsprocessen. Limonit, järnhydroxider med varierande sannansättning, är huvudkomponent i sjö- och myrmalm och kan uppträda i slagger som oreducerade rester men vanligtvis förekommer limonit som en sekundär bildning, dvs. i form av rost.

Metallografisk undersökning

Metallografiska undersökningar utfördes på fyra polerade prover av metalliskt järn i påfallande ljus för att bedöma järnkvaliteten. I mikroskopet kan olika texturer, beroende på kemisk sannansättning och grad av bearbetning utläsas. Proverna etsades med 2 % nitallösning. Metoden används för att bedöma kolhalten i materialet, t.ex. om det är ett mjukt järn eller kolstål. Metoden kan också avslöja ett fosforinnehåll, vilket påverkar materialets hårdhets- och seghetersegenskaper. Även mängden och typen av slaggmässutslagning kan studeras för att ytterligare kunna bedöma kvalitet och möjliga användningsområden. Några termer som används i detaljbeskrivningarna i resultatkapitlet är ferrit som är mjukt järn utan kolinhalt, cementit som är en förening av järn och kol (Fe₃C), och perlit som är en struktur uppbyggd av omväxlande ferrit och cementit. Generellt medför alltså en större mängd perlit en högre kolhalt och ett hårdare material. Ännu högre kolhalt fås i gjutjärn, med mer än 2 % kol. Också i gjutjärnet kan en del detaljer ses, t.ex. graftitlameller som är tunna skivor av kol. En speciell struktur som kan bildas vid avsmältning i vitt gjutjärn är ledeburit som består av en blandning av cementit och perlit.

Undersökningen genomfördes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digitalkamera.

Elektronmikrosondanalyser

Metoden innebär att en elektronstråle fokuseras på önskad punkt på provet. De ingående elementen kan därmed detekteras och deras halt mätas. På detta sätt får man kvantitativa data av sannansättningen på de olika element som ingår i materialet.

Totalkemiska analyser

Totalkemisk analys utfördes på 18 slaggprov hos ALS Scandinavia, Luleå. Använd analysmetod är ICP-AES för huvudelement och ICP-QMS för spårelement. Totalt analyserades 43 element i varje prov (tabell 5). Slaggproven har också studerats i mikroskop (petrografisk undersökning). I standardanalysen för slagger från järnhantverk ingår inte

Resultat

De slagger som har ingått i studien finns sammanställda i tabellform för respektive stad där det också framgår vilka som har analyserats mer detaljerat och med vilken typ av analys. Resultaten av analyserna för slaggerna presenteras inledningsvis detaljerat för varje slagg där deras yttre beskrivs liksom de observationer som har gjorts i mikroskop. I tabellform finns en sammanställning av dessa observationer. En samlad bedömning om slaggerna följer därefter. De kemiska analyserna följer sedan i ett eget stycke där slaggerna behandlas tillsammans.

Figur 1. Plan över Visby med kvarter varifrån slagger har analyserats. Underlag från "Visby, Medeltidsstaden 71", karta 8 (Engeström 1988).
Tabell 1. Förteckning över slagger från Visby, från Gotlands museum samt en från Stenkumla sn på Gotland, från Tekniska museet.

<table>
<thead>
<tr>
<th>Kvarter/gata</th>
<th>Benämning</th>
<th>Notering</th>
<th>Provtyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priorn 11</td>
<td>2315</td>
<td>T, ICP, E</td>
<td></td>
</tr>
<tr>
<td>Priorn 11</td>
<td>2478</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>St Clemens 4</td>
<td>780530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaplanen 8</td>
<td>507</td>
<td>T, ICP, E</td>
<td></td>
</tr>
<tr>
<td>Kaplanen 8</td>
<td>1278</td>
<td>Del av större fyndask</td>
<td></td>
</tr>
<tr>
<td>Gråbrodern</td>
<td>Utan nr</td>
<td>Ur plastback</td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>169</td>
<td>1 st ur fyndpåse</td>
<td>P</td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>304</td>
<td>Del ur större fyndask</td>
<td></td>
</tr>
<tr>
<td>Schweitzergränd</td>
<td>307</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Abboten 1</td>
<td>54</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Abboten 1</td>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>142</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smedjan 7</td>
<td>485</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Stora Torget Visby</td>
<td>Schakt II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Nihlén) CS819</td>
<td>CS819:15</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>Fyndback ur Nihlén samling</td>
<td>Anonym Slagg ur ask märkt ”22 st järnklumpar”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fyndback ur Fardelins samling</td>
<td>"Stenålderslagret Visby” Slagg ur ask märkt ”12 st järnklumpar”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenkumla sn</td>
<td>TM 16858</td>
<td>T, ICP</td>
<td></td>
</tr>
</tbody>
</table>

I kolumnen ”Provtyp” har noterats vilka som har analyserats ytterligare. T = tunnslip för prov som undersöks petrografiskt, ICP = prov som analyserats med totalkemiska analyser, P= polerprov som undersöks metallografiskt, E= prov som har analyserats med elektronmikroskop.

Visby

Priorn 11, Fnr 2315

Okulär granskning

I delat snitt (fig. 2) framträden en mestadels homogent uppbyggd slagg med mindre porer i nedre halvan, större i den övre, men utan tydlig skiktning. I botten finns små kolstycken och direkt över dessa är slaggen ljust grå men i övrigt grå. Denna slagg har valts för fortsatta analyser.

I fyndposten finns också en fluten, platt och plan slagg ca 70 mm lång och 35 mm bred. Tjockleken varierar från 6–18 mm, vikt 49 g.
Undersidan av slaggens är metallglänsande grå där slaggsträngar har
stelnat mot underlaget. Övertyan är jämn och slät, grå-röd och med
stelningsstruktur. Den är svagt magnetisk på övertyan.

Undersökning i mikroskop
Stora delar av slaggens tjocklek ingår i provet, men den absoluta botten-
och övertyan saknas. Slaggen är huvudsakligen homogent uppbyggd
(fig. 3). Den domineras av olivin, tämligen grovkornig, med en
mellanliggande glasfas. Lokalt finns det kalium-aluminiumrika mineralet
leucit i mindre kristaller. Sällsynt, men utspritt i hela provet, förekommer
också finkorniga kristaller av järnoxid, sannolikt magnetit. I nedre delen
finns flera större kolstycken insmält. Kring dessa finns små områden av
metalliska bildningar (mikrometerstorlek). Bland dessa finns minst två
olika metaller, troligen järn och koppar (fig. 4).

Figur 2. Priorn 11, smideskållen Fnr 2315 i tvärsnitt.

Figur 3. Priorn 11, Fnr 2315 i mikroskop. Översikt på homogen slagg som består av
olivin (ljusgrå) och en mellanliggande glasfas (mörkare grå).

Elektronmikrosondanalys
En kemisk analys i metalldroppar bekräftar att den ena typen domineras av järn, med spårhalter av koppar och kobolt. Den andra typen av dropp är huvudsakligen koppar med drygt 1 % järn.

Figur 5. Priorn 11, slaggen Fnr 2478 i tvärsnitt med tydligt urskiljbara slaggsträngar.

Priorn 11, Fnr 2478
Okulär granskning
I fyndposten ingår flera små slaggstycken av liknande typ (Se även Fnr 2315 från Priorn 11). Den största slaggen är 45×43×30 mm stor och väger 72 g. Slaggernas totala vikt är 219 g. Slaggerna är uppbygga av flera pålagrade slaggsträngar som är grå på undersidan och grå-röda på
översidan där de är magnetiska och något skrynkliga till följd av stelningen.

I delat tvärsnitt (fig. 5) framträder de pålagrade slaggträngarna tydligt, likt stearinlapper med mestadels tät slagg med större hålrum centralt i slaggsträngarna. Sammansättning är mestadels mycket likartad.

Figur 6. Priorn 11, Fnr 2478. Översikt från mikroskopet. Slaggsträngarna urskiljs med hjälp av tunna ljusa band av magnetit och skillnad i kornstorlek (finast närmast kontakterna).

Undersökning i mikroskop
Stora delar av slaggens tvärsnitt ingår i det undersökta provet. De okulärt observerade pålagrade slaggsträngarna syns även tydligt i mikroskop (fig. 6), med tydligt definierade kontakter. Slaggsträngarna är mycket likartat upbyggda och består av olivin, wüstit och en glasfas, samt sporadiskt små droppar av metalliskt järn. De är finkorniga i ytterkanterna till följd av relativt snabb avkylning, och något grövre mer centralt. Längs kanterna finns också en tunn zon av finkornig järnoxid
Järnsmide i Visby och Lödöse
(fig. 7). Denna är stävligt svår att urskilja men i de fall som kristaller kan observeras rör det sig dels om magnetit, dels om komplext sammansatta järnoxider.

St Clemens 4, Fnr 780530
Okulär granskning
Intakt konkav-konvex smidesskålla (fig. 8), oval i plan med måtten 130/155 mm. Tjocklek som mest ca 55 mm. Vikt 1381 g. Botten är täckt av sekundärt fastkittat material. Övertytan är mörkbrun med trögfluten slagg. Längs kanterna, nära övertytan, finns ställvis inneslutna kolstycken. Slaggen är lokalt magnetisk på övertytan, i övrigt omagnetisk.

Smidesskålla.

Kaplanen 8, Fnr 507
Okulär granskning
I fyndposten ingår ett större och nio mindre slaggfragment av samma typ, eventuellt från ursprungligen samma stycke. Det största stycket väger 133 g och är 55×40 mm i plan. Tjockleken är som mest 45 mm, vilket sannolikt är ursprunglig tjocklek. Slaggen är svartglasig och består av flera pålagrade slaggsträngar. Slaggen är extremt tät, speciellt i övre halvan.

I delat tvärnitt framträder slaggens täthet och de pålagrade slaggsträngarna ännu tydligare.
Undersökning i mikroskop

Elektronmikrosondanalys

Kemiska analyser i några metalldroppar bekräftar att de huvudsakligen består av koppar. De innehåller också några tiondels procent av antimon och järn. Dessutom finns små blydroppar (< 1 mikrometer) i koppardroppen.

Kaplanen 8, Fnr 1278

Okulär granskning

I fyndposten ingår tre slaggfragment varav två sannolikt är del av samma slagg. En slagg är del av smidesskålla, ca en fjärdedel. Vikt 458 g. Största längd är 95 mm vilket möjlichen motsvarar halva diametern. Tjockleken varierar från 20 till 35 mm. Slaggen är omagnetisk. Troligen har skållan varit plan-konvex med en förhöjning längs en ytterkant. Slaggen är täckt av sekundärt fastkittat material men en mörk, relativt porös slagg skymtar genom detta.

De två andra bitarna är fragment av annan karaktär. Total vikt 275 g. Storlek i plan ca 100×70 mm, tjocklek varierande från 25 till 60 mm. Slaggen i dessa är oregelbunden i formen och ingen tydlig skållform kan urskiljas. Slaggen är troligen tredelad. En halva utgörs av slagg som är uppbyggd av små slaggsträngar som har stelnat runt små kolstycken. Den andra halvan är glasigare slagg i form av ett större slaggflöde. Slaggen är mestadels omagnetisk men lokalt magnetisk vid rostiga fläckar.

Samliga bitar är sannolikt smidesslagger.

Gräbrodern, Utan nummer

Okulär granskning

Del av plan-konvex smidesskålla, ca halv. Vikt 598 g. Diameter 120 mm, tjocklek som mest ca 50 mm. Bottenytan är täckt av sekundärt korroderat material, överytan likaså. Där finns även fastkittade fragment av rödbränd lera, gräbränd lera, kolstycken och benfragment.

I delat tvärsnitt framträden en slagg om är relativt homogen i sin uppbyggnad. Eventuellt är den något skiktad med avseende på porförekomst. Den är magnetisk på snittytan.

Smidesskålla.
Schweizergränd, Fnr 78
Okulär granskning
Del av smidesskålla, fragment. Vikt 93 g. Inga ursprungliga ytterkanter i plan är bevarade men mätten är 60×45 mm. Tjockleken på ca 28 mm är dock ursprunglig. Slaggen är grå med en undersida som har stelnat mot sandigt underlag, övertan är något ojämnn med enstaka inneslutna kolstycken. I profil (fig. 9), men ej delad, framträder en något skiktad slagg.

Schweizergränd, Fnr 169
Okulär granskning

Vid delning visar det sig att stora delar av stycket består av svampigt metalliskt järn som är omgivet av slagg. Slagg dominerar i bottenvänster som ett ca 10 mm tjockt lager. Däröver finns järn och slagg tillsammans, med slagg huvudsakligen längs kanterna och järn mer centralt. Stycket är tämligen rikt på hålrum.

Det metalliska järnet är genomgående grovkornigt och har en mestadels låg, men något varierande kolhalt, med huvudsakligen ferrit och mindre mängder perlit.
Schweizergränd, Fnr 288
Okulär granskning
Oregelbunden slaggklump i form av ett fragment med mycket sekundär beläggning på ytan. Vikt 146 g. Största mått ca 50 mm. Inga ursprungliga ytterformer finns bevarade som antyder att det skulle vara en smidesskålla, varför denna slagg är svår att definiera.

Schweizergränd, Fnr 304
Okulär granskning
I fyndposten ingår två slaggfragment som troligen kommer från samma slaggstycke. Total vikt 279 g. Storlek i plan 75×55 mm, tjocklek 60 mm. Slaggen är grå, glasig till matt. Längs en omböjd yttre kanter finns rödbänd lera på sidan. Längs denna finns flera pålagrade stearinliknande slaggsträngar.

Vid delning framträder ett heterogent uppbyggd stycke med en kant av rödbänd lera och växelvisa lager av slagg och delvis smält silikatrikt material.

Slagg och inödlings tillsammans, utan tydlig skålform.

Schweizergränd, Fnr 307
Okulär granskning
I fyndposten ingår flera slaggfragment med mycket sekundär beläggning. Det största väger 197 g, är kantigt med rundade hörn i plan 70×50 mm, med en tjocklek som mest 35 mm. Möjlig är det del av en smidesskålla, men den saknar den typiska plan-konvexa formen. På bottenytan finns tunnare stearinliknande slaggsträngar medan överytan utgörs av mer lättflutna större slaggflöden. Lokalt finns inneslutna kolstycken, bland annat nära bottenytan.

Vid delning framtrår en homogent uppbyggd slagg, dock med något varierande porositet. Större porer förekommer i botten och överst, däremellan är de mindre i storlek.
Undersökning i mikroskop

Slaggen är en homogen, relativt grovkornig skålla som innehåller mycket wüstit. Små droppar av metalliskt järn, fåtal av koppar(levering) förekommer i slagen.

Figur 12. Schweizergränd, Fnr 307 i mikroskop. Översikt på homogen slagg som är relativt grovkornig och innehåller wüstit (ljus), olivin och glas.

Abboten 1, Fnr 54
Okulär granskning
Fyndposten innehåller en större och fem mindre slaggsfragment av liknande typ. Det största väger 490 g och är del av en plan-konvex smidesskålla med största mätt 100 mm som är något mindre än hela diametern. Maximal tjocklek är 40 mm centralt. Slaggen är omagnetisk, grå, och nästan metallglänsande runtom.
I delat snitt (fig. 14) framträder en mycket homogent uppbryggd slagg såväl vad gäller sammansättning som porförekomst och -storlek. Enstaka droppar av metalliskt järn kan observeras på snittytan.

Järnsmide i Visby och Lödöse

Figur 15. Abboten 1, Fnr 54. Översikt från mikroskopet på slaggen som domineras av olivin (ljusgrå) och en glasfas (mörkare grå). Wüstit förekommer i mindre mängd (tunna ljusa formationer).

Figur 16. Abboten 1, Fnr 54. Detalj från mikroskopet som visar att olivinkristaller är zonerade, dvs., deras yttersta kant (mörkare grå; se pil) har en avvikande sammansättning.

Undersökning i mikroskop

Slaggen är mycket homogen i sin uppbryggnad även i mikroskala (fig. 15). Den är tämligen grovkornig i hela sin tjocklek förutom allra närmast botten där den är något finkornigare. I hela slaggen förekommer grovkorniga olivinkristaller (zonerade; se fig. 16), något finkornigare dendritisk wüstit och en glasfas. Olivin förekommer även som något finkornigare långsmala kristaller. Metalliskt järn, i form av små droppar förekommer ytterst sparsamt, i den allra översta respektive nedersta delen, där metallen delvis också har rostat.

Homogen skälla! Den är grovkornig (långsam avsvalning) och innehåller både olivin och wüstit samt små droppar av metalliskt järn.
Abboten 1, Fnr 153

Okulär granskning

Smedjan 7, Fnr 138

Okulär granskning

I fyndposten ingår flera slaggfragment av lite olika karaktär. En typ utgörs av glasiga strängar, där några är större med flera pålagrade slagsträngar, andra är mindre och består enbart av enskilda slagsträngar. Den största väger 71 g, är ca 80×65 mm i plan och som mest ca 18 mm tjock.

Två andra fragment är delar av en smidesskålka, troligen nästan plan-plan. Inga originalytterkanter är bevarade. Av diametern återstår ca 50 mm. Tjockleken är troligen ursprunglig, ca 25 mm. Den största delen väger 125 g. I skålkan kan enskilda slagglöden också urskiljas, men i snitt förefaller slaggen vara homogen i sammansättning. Långs brottyta finns också fläckar av gråbränd lera som antingen är insmält i slaggen eller sekundärt fastkittad.

Smedjan 7, Fnr 142

Okulär granskning

I fyndposten ingår fyra slaggfragment. Det största väger 71 g och är 43×40 mm i plan. Tjockleken är som mest ca 35 mm. Slaggen har former som antyder att den har stelnat i en rännna snarare än en rundare försänkning. Den är uppbyggd av flera pålagrade, relativt lättflutna slagglöden (fig. 17) som är något mindre i botten och något större i de övre delarna. Slaggen är mestadels grå med en nästan oljig övertyta.

I delat tvärsnitt (fig. 18) framträder de pålagrade slagglödssträngarna tydligt. Dessa är mestadels tätta men har ett centralt större hålrum. Slaggen förefaller vara homogen i sammansättning.

Undersökning i mikroskop

De okulärt väl synliga slagglödssträngarna framträder tydligt även i mikroskop. Slaggen är mycket likartad i sammansättning och kornstorlek i alla slagglödssträngar. De består av relativt finkornig olivin, wüstit och en glasfas. Kontakterna (fig. 19) mellan slagglödssträngarna definieras av små skillnader i kornstorlek i kornstorlek (finkornigare) och en ansamling av små hålrum. Däremot finns inte någon tunn zon av magnetit. Sporadiskt förekommer också små droppar av metalliskt järn.

Slaggen har ett utseende som en vanlig reduktionsslagg, stearinslagg, som har stelnat i slagguppsamlingsutrymme i ugnens nedre del. Den innehåller små droppar av metalliskt järn.

Figur 18. Smedjan 7, Fnr 142 i delat tvärsnitt där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas.

Figur 19. Smedjan 7, Fnr 142. Detalj från mikroskopet, där kontakten mellan slaggflöden syns med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.
Smedjan 7, Fnr 259
Okulär granskning
Oregelbundet slaggfragment med endast en ursprunglig ytterkant.
Troligen del av homogent uppbyggd smidesskål, med en tjocklek över 32 mm.

Smedjan 7, Fnr 485
Okulär granskning
I fyndposten ingår två fragment av likartad slagg. Den största väger 333 g, är rund till kantig i plan ca 80×80 mm stor med en tjocklek på ca 30 mm över i stort sett hela slaggen. På slaggen finns mycket sekundärt fastkittat material runtom vilket gör det svårt att få en uppfattning om ursprunglig form.

Vid delning av den största biten framkommer en slagg som är uppbyggd av två olika skikt (fig. 20). Den nedre halvan består av en grå, relativt tät slagg. Den övre utgörs av något ljusare gröngrå slagg med något större porer. På övertytan och lokalt i sprickor finns sekundärt fastkittat material.

Undersökning i mikroskop
Den tydliga skiktning som framträder i tvärsnitt syns tydligt även i mikroskop. I botten finns ett tunt skikt av material som sekundärt har kittat fast i slaggen. Över detta finns ett lager av wüstitrik slagg som övergår i olivinrik slagg. Gränsen mellan dessa kantas av sekundära bildningar och det är inte möjligt att se hur kontaktytan primärt har bildats. Allra överst finns ett likartat fastkittat skikt som i botten innehåller såväl sandkorn som kolstycken och glödskalsfragment. Slaggen i den nedre halvan domineras av wüstit som är tämligen grovkornig (fig. 22). Dessutom förekommer en glasfas och relativt rikligt med svampiga bildningar av metalliskt järn. Slaggen i den övre delen (fig. 21) är något finkornigare och innehåller långsmala olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan. I den övre delen finns också svampiga bildningar av metalliskt järn.
I det fastkittade bottenskiktet, samt i några bottenära hålrum finns små förekomster av koppar/kopparlegering. Någon sådan har dock inte noterats primärt i slaggen. Här rör det sig möjligen om att slaggen har legat i en miljö där kopparhaltigt material också har funnits.

Figur 21. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slaggen i den övre delen som innehåller långsmala olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan (se nästa figur).

Figur 22. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slaggen som i den nedre halvan domineras av wüstit som är tämligen grovkornig.

Stora Torget C5819:15, WII:12
Okulär granskning
Smidesskålla, nästan komplett, men i två delar (fig. 23). Den är plankonvex även om botten är diffust konvex. Vikt 383 g. Oval i plan med största mått 125 mm och minsta 85 mm. Tjocklek som mest 30 mm.
Sekundärt material finns fastkittat runtom vilket döljer mycket av slaggens detaljer. I delat tvärsnitt (fig. 24) framträder slaggens karaktär bättre. Den är något skiktad med avseende på porositet, med mer porer i nedre halvan och mindre i övre. Möjligtvis finns en skillnad i sammansättning som syns i form av ljusare slagg i nedre delen. Lokalt finns små droppar av metalliskt järn, främst i nedre halvan.

Figur 24. Stora Torget C5819:15, WII:12 i delat tvärsnitt som visar att slagen är skiktvis uppbyggd.

Undersökning i mikroskop
Den skiktvisa uppbyggnad som är tydlig okulärt syns i mikroskop med hjälp av skillnader i kornstorlek och kornform (fig. 25). Sammansättningen är dock homogen i hela slaggens tjocklek. Slagen består av olivinkristaller, en grövre och en finkornigare, och en glasfas. Lokalt förekommer mycket finkornig järnoxid (magnetit?) tillsammans med de finkorniga olivinkristallerna. Dessutom förekommer en del större, oregelbundna bildningar av metalliskt järn (fig. 26), främst i den nedre halvan. I botten finns också ett fåtal insmälta kolstycken.
Slaggen är en homogen, grovkornig, olivinrik smideskälla med större, oregelbundna bildningar av metalliskt järn.

Figur 25. Stora Torget C5819:15, WII:12. Översikt från mikroskopet som visar att slaggen består av olivin (ljusare grå) och en glasfas (mörkare) men att det finns skillnader i kornstorlek med grövre korn i den nedre delen.

Fyndback ur Nihléns samling märkt ”22 st järnklumpar”
Okulär granskning
I fyndposten finns del av en plan-konvex smidesskål, troligen oval i form men ursprunglig form är något osäker. Största mått i plan är 120 mm. Tjockleken, som är ursprunglig är 45 mm. Sekundärt material finns fastkittat runtom. Skållan är mestadels omagnetisk men lokalt magnetisk på överytan.

Fyndback ur Fardelins samling märkt ”12 st järnklumpar”
Okulär granskning
I fyndposten finns en nästan intakt konvex-konvex smidesskål. Vikt 593 g, diameter 100 mm, tjocklek 55 mm. Omagnetisk. Mycket sekundärt material finns fastkittat runtom slaggen men i profil framträder en tämligen homogent sammansatt slagg.

Figur 27. TM 16858. Slagg från Stenkumla sn. Två mindre stycken av ursprungligen större slagg med många pålagrade slaggsträngar från en reduktionsslagg.

Slagg från Tekniska museets samling, TM 16858, Stora Homa, Stenkumla sn, från John Nihléns undersökning 1929
Okulär granskning
Tre fragment från en ursprungligen betydligt större slagg av typen bottenslagg. Slaggen är uppbyggd av flera pålagrade slaggsträngar (fig. 27) som är ljusgrå på ytan. Den är omagnetisk och har kolavtryck. På brottytor framträder en mörkgrå, tämligen tät slagg.

Undersökning i mikroskop
De påbyggda, tunna slaggsträngar som observeras tämligen tydligt okulärt syns även i mikroskop (fig. 28) men inte lika tydligt. Kontakterna är något diffusa men kan anas med hjälp av skillnader i kornstorlek där kontakterna är något finkorniga än mer centrala delar i varje slaggsträng, även om denna också är tämligen finkornig. Slaggen innehåller olivin, wüstit och en glasfas. Proportionerna mellan dessa är något olika i de enskilda slaggsträngarna (fig. 29), men skillnaden är inte speciellt stor även om wüstit nästan saknas i vissa. I slaggsträngarna förekommer också enstaka droppar av metalliskt järn.
Detta utseende är typiskt för reduktionsslagger. Denna är dock relativt finkornig för karaktäristiska stearinslagger som har stelnat i ett slagguppsamlingsutrymme, men den saknar den tunna zon av magnetit som vanligtvis bildas om slagen stelnar utanför ugnen. Men, i några av de olivinrikaste slaggsträngarna är det magnetit och inte wüstit som förekommer! Slagen är från järnframställning, men inte självklart vilken ugnstyp Den innehåller enstaka droppar av metalliskt järn.

Figur 28. TM 16858 från Stenkumla sn. Översikt från mikroskopet som visar tre olika slaggflöden med tydliga kontaktar (se även nästa figur).

<table>
<thead>
<tr>
<th>Kvarter/gata</th>
<th>Benämning</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smedjan 7</td>
<td>142</td>
<td>Homogen slagg. Morfologiskt likt reduktionsslagg.</td>
<td>Ser ut som en vanlig reduktionsslagg, stearinslagg (ol, wu, gl), som har stelnat i slagguppsamlingsutrymme i ugnens nedre del. Små droppar av metalliskt järn.</td>
</tr>
<tr>
<td>Stenkumla sn.</td>
<td>TM 16858</td>
<td>Stearinliknande reduktionsslagg.</td>
<td>Utseende typiskt för reduktionsslagger, men relativt finkornig för karakteristiska stearinslagger som har stelnat i ett slagguppsamlingsutrymme, men den saknar den tunna zon av magnetit som vanligtvis bildas om slagg stelnar utanför ugnen. Men, i några av de olivinrikaste slagsträngarna är det magnetit och inte wüstit som förekommer! Enstaka droppar av metalliskt järn.</td>
</tr>
</tbody>
</table>

Lödöse

Slaggar från Lödöse är utvalda från kvarter som bedömt ha bäst anknytning till järnsmide. Kvarter med annat hantverk har ej prioriterats. Slaggerna har benämning efter de delområden som har undersökts vid olika tillfällen och som presenterats av Andersson (2010). På kartan (fig. 30) framgår var dessa delområden finns.
Tabell 3. Förteckning över slagger från Lödöse, från Lödöse museum.

<table>
<thead>
<tr>
<th>Område</th>
<th>Benämning</th>
<th>Kommentar</th>
<th>Prov</th>
<th>Datering</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>169</td>
<td>Del av större skälla</td>
<td>T, ICP</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MK</td>
<td>320</td>
<td>Del av skälla (?), avvikande översida</td>
<td>T, ICP</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MK</td>
<td>600</td>
<td>2 små, tunga, platta skällor</td>
<td>P</td>
<td>1100-talets slut</td>
</tr>
<tr>
<td>MH</td>
<td>136</td>
<td>1 skälla, mot vägg</td>
<td>T, ICP</td>
<td>Ej före 1200</td>
</tr>
<tr>
<td>MG</td>
<td>283a</td>
<td>1 oregelbunden slagklump</td>
<td>T, ICP</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MG</td>
<td>329</td>
<td>1 oregelbunden slagklump</td>
<td></td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MM</td>
<td>572e</td>
<td>1 slagfragment, ej skälla</td>
<td>T, ICP</td>
<td>11-1400-tal</td>
</tr>
<tr>
<td>MM</td>
<td>584e</td>
<td>1 oregelbunden slagklump</td>
<td></td>
<td>11-1400-tal</td>
</tr>
<tr>
<td>ME</td>
<td>2</td>
<td>2 skällor</td>
<td>T, ICP, E</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>ME</td>
<td>3</td>
<td>1 skälla, 1 järnrik klump</td>
<td>P,</td>
<td>12-1400-tal</td>
</tr>
<tr>
<td>MC</td>
<td>4</td>
<td>SL:MC, 1 stor skälla</td>
<td>T, E</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>16</td>
<td>SL:MC, skälla mot vägg</td>
<td>P, T, ICP</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>18</td>
<td>SL:MC, 1 skälla</td>
<td>T, ICP</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>19</td>
<td>SL:MC, 3 skällor</td>
<td>T, ICP</td>
<td>(av nr 1)</td>
</tr>
</tbody>
</table>

I kolumnen "Provtyp" har noterats vilka som har analyserats ytterligare. T = tunnslip för prov som undersökt petrografiskt, ICP = prov som analyserats med totalkemiska analyser, P= polerprov som undersöks metallografiskt, E= prov som har analyserats med elektronmikrosond.

MK, Fnr 169
Okulär granskning

I delat tvärsnitt är slaggen mycket homogen uppbyggd (fig.32). Enstaka hålrum finns nära kanterna men i övrigt är slaggen tät. Enstaka inslag av insmält silikatiskt material finns nära övertytan. Trots det ärgröna området i brottytan kan inget metalliskt kopperhaltigt material observeras med blotta ögat på tvärsnittsytan.

Undersökning i mikroskop
Slaggen är tämligen homogen uppbyggd och domineras av grovdendritisk wüstit. Olivin och en glasfas förekommer i betydligt mindre mängd (fig. 33). Proportionerna mellan de ingående mineralen varierar dock något nerifrån och uppåt utan några väl definierade gränser. Lokalt förekommer droppar av koppar (fig. 34), men inget metalliskt järn har observerats.
I mikroskala saknar denna slagg drag som är karaktäristiska för smidet, speciellt föremålssmide. På slaggens yta syntes grönärgade områden som mycket riktigt påvisar innehåll av metallisk koppar. Dessa förekomster är dock endast mikroskopiska och kan ej observeras med blotta ögat.

Figur 31. MK, Fnr 169, fragment av smidesskålla med ett grönärgigt inslag.

Figur 32. MK, Fnr 169 i tvärsnitt som visar en mycket homogent upphyggd slagg.
Figur 33. MK, Fnr 169 i mikroskop. Översikt på den homogena slaggen som domineras av västt (ljus grå) med olivin och glas i mindre mängd. Små metalldroppar (ljusa) är fåtaliga.

Figur 34. MK, Fnr 169 i mikroskop. Detalj som visar slaggens metalldroppar (ljus röda) som består av koppar.

MK, Fnr 320

Okulär granskning

Den delade tvärnittsytan uppvisar en mestadels homogen slagg. Diffust kan en skiktvis uppbyggnad anas med hjälp av skillnader i porositet. Små kolstycken finns insmälta i botten och lokalt även högre upp i slaggen.
Undersökning i mikroskop
Ställvis förekommer också större ansamlingar av wüstit. Till skillnad från i MK 169 kan inga droppar av metall observeras.
I mikroskala saknar denna slagg drag som är karaktäristiska för smidet, speciellt föremålssmide.

MK, Fnr 600
Okulär granskning
Järnet är genomgående grovkornigt och mestadels tämligen kolrikt. Till stora delar dominerar perlit (lokal med lite cementit) men ställvis är kolhalten lägre där ferritandelen är något större.

FIGUR 35. MK, Fnr 600, smidesskålla 1 i tvärsnitt.
Okulär granskning

I tvärsnitt (fig. 38) syns en homogen slagg med små, diffusa variationer i porositet, men mestadels tät. Intemetalliskt järn är synligt trots att slaggens färg är magnetisk på övertytan.

Undersökning i mikroskop

I mikroskop framträder en slagg som består av nästan enbart järnoxider (fig. 39). I stora drag är den homogen även om det finns variationer i vilka järnoxider som förekommer. Mestadels dominerar dendritisk wüstit, men magnetit i är vanligare i vissa partier (fig. 40). Wüstiten visar sig också ha inslag av magnetitsammansättning. Underordnat förekommer silikat- och faser i form av olivin och en glasfas. Längs kanterna finns en del fastkittat material, bland annat glödskalsliknande fragment. Metalliskt material saknas förutom ett fåtal droppar av järn.

Eftersom metalliskt järn i princip saknas är det magnetit som orsakar skållans magnetism. Vid första granskning i mikroskop förefaller den omagnetiska wüstiten dominera, men vid närmare granskning ser man att den är komplext uppbyggd med inslag av magnetit och att magnetit också dominerar i vissa delar, vilket märks i form av något starkare magnetism.

Figur 39. MH, Fnr 136 i mikroskop. Översikt på slagen som domineras av järnoxider, såväl västtit som magnetit (båda ljust grå). Magnetit förekommer som kantigare kristaller (se även nästa figur) och västtit i rundare, mjukare former.
Figur 40. MH, Fnr 136 i mikroskop. Detalj som visar förekomsten av magnetit som kantiga ljus grå kristaller, omgivna av en grå glasfas.

MG, Fnr 283a
Okulär granskning
Oregelbunden slagg (smidesskålla?). Vikt: 135 g. Slaggen är gulbrungrå och har oregelbunden form (fig. 41). Den har kolavtryck och är svagt magnetisk.

Den delade slaggen är homogen och tämligen ljus jämfört med många andra. Den är omgivna av mycket sekundärt fastkittat material. Slaggen har ingen tydlig ytterform men slaggen förefaller vara av liknande typ som många av de andra slaggerna från samma lokal.

Undersökning i mikroskop
Slaggen är relativt homogen uppbyggd med utseende som är vanligt i reduktionsslagger. Den består av finkorniga olivinlammeter, dendritisk wüstit och en glasfas. Metalliskt järn förekommer i form av små droppar och något större oregelbundna bildningar.

Figur 41. MG, Fnr 283a, mindre smidesskålla.
MG, Fnr 329

Okulär granskning

Oregelbunden slagg (fig. 42) som är gråbrun och har oregelbunden form och avtryck efter kol. Slaggen är svagt magnetisk.

I tvärsnitt visar det sig att endast en liten del slagg finns bevarad. Slaggen är också omgiven av mycket sekundärt material, även fastkittat.

MM, Fnr 572e

Okulär granskning

Oregelbundet slaggfragment. Vikt: 38 g. Slaggen är gråbrun, har oregelbunden form och är magnetisk. I tvärsnitt syns en slagg som huvudsakligen är homogen men lokalt har inneslutna kolstycen och insmält silikatiskt material.

Undersökning i mikroskop

Slaggen liknar MG283a men är något grövre. Den har också mer sekundära bildningar och insmält glasigt material.

MM, Fnr 584e

Okulär granskning

I tvärsnitt (fig. 43) framträder en till stora delar homogen uppbryggd, smäporig, slagg. Längs botten och delvis längs kanter finns större hålrum och inslag av insmält silikatiskt material.
ME, Fnr 2

Oklär granskning

Figur 43. MM, Fnr 584e, oregelbunden slagg i tvärsnitt med mestadels homogent uppbyggd slagg, men avvikande sammansättning i nedre vänstra delen.

Figur 44. ME, Fnr 2, smidesskålla 1 i tvärsnitt.
Undersökning i mikroskop
Skållan (nr 1) är diffust skiktad (fig. 45). Skikten är ej väl avgränsade utan framträder diffust med hjälp av varierande proportioner mellan de ingående mineralen. I nedre halvan finns också ett skikt som är mer sekundärt påverkat än resten av slaggen. I botten finns också en del fastkittat material. I slaggens alla skikt finns olivin, wüstit och en glasfas. I den nedre delen förekommer också leucit. Droppar av metalliskt järn förekommer i liten mängd i hela slaggen. Droppar av koppar(legering) är också observerade, främst i slaggens övre delar. Möjligens förekommer droppar med en blandning av järn och koppar (fig. 46) i slaggens centrala och nedre delar.
Elektronmikrosondanalys
Analyser med elektronmikrosond på metalldropparna visar att en typ utgörs av en kopparlegering i form av brons med tennhalt på ca 11 %. Metallen innehåller dock även järn (ca 2,5 %, analys ME2_4 i tabell 6). Det finns, som observerats i mikroskop, också komplexa metalldroppar där en del domineras av järn men med några viktsprocent koppar (ca 4 %, analys ME2_1-2 i tabell 6) och med spårhalter av kobolt och arsenik. Droppens andra del domineras av brons med järninnehåll med liknande halter som i de homogena dropparna.

ME, Fnr 3
Okulär granskning

Slaggfragmentet har oregelbunden form och har blågrå och gulbrun färg. Vikt: 97 g. Slaggen är magnetisk. I tvärsnitt framträder en koncentration av metalliskt järn, ca 15×7 mm stor, omgiven av slagg och/eller rost.

Koncentrationen av järn har en kolhalt som varierar något; från mostadels perlitt till ferrit och perlitt. Texturen är genomgående grovkornig.

Figur 47. ME, Fnr 3, smidesskålla i tvärsnitt.

Figur 49. MC, Fnr 4 i mikroskop. Översikt där slaggen innehåller stor ansamling av metall. Slaggen innehåller västtit, olivin och en glassfas. Analyser visar att metallen är en kopparlegering som innehåller både tenn och järn samt spår av antimon.

MC, Fnr 4

Okulär granskning

Intakt, plan-konvex smidesskålla. Vikt: 3870 g. Formen i plan är närmast oval, med längsta diameter 210 mm och tjocklek på 60 mm. Ovansidan är ojämn och undersidan är slät. Större samt mindre avtryck efter kol finns på dess ovansida samt på kanterna. Skållan har ljusbrungul och brun färg. Den är svagt magnetisk.

I tvärsnitt framträder en huvudsakligen homogen slagg. Den är dock något skiktad med avseende på porstorlek med omväxlande större och mindre porer. I nedre halvan finns en svampig ansamling av metall som sannolikt är kopparrik (fig. 48).
Undersökning i mikroskop
Slaggen är relativt homogen i sin uppbyggnad och innehåller wüstit, olivin och en glasfas. Den liknar slaggen i ME 2 men har något mer wüstit. Främst i nedre halvan förekommer rikligt med svampiga bildningar av metall som sannolikt är dominerad av koppar men troligen inte ren koppar (fig. 49). Metalliskt järn förekommer i betydligt mindre mängder och enbart som små droppar.

Elektronmikrosondanalys
Analyser med elektronmikrosond på den större metallkoncentrationen bekräftar observationerna i mikroskop om att den består av två olika faser. Den dominerande, kopparrika, är en brons med ca 4 % tenn, knappt 1 % järn samt 0,5 % antimon. Analys över en större yta som omfattar även den kopparfattigare fasen visar att totalt sett innehåller legeringen ca 68 % koppar, drygt 26 % järn och drygt 6 % tenn.

Figur 50. MC, Fnr 16, smidesskål med avtryck mot vägg till höger i bild.

MC, Fnr 16
Okulär granskning
Intakt, plan-konvex smidesskål (fig. 50). Vikt: 2328 g. Formen i plan är oregelbunden (avtryck mot vägg). Skålans är 140 mm i diameter och 80 mm tjock. Ovansidan är ojämn, med ett avtryck mot vägg med smält material samt bränd lera (?). Undersidan är slät. På oansidan finns kolavtryck, enstaka kolavtryck finns även på undersidan. Skållan har gulbrun färg. Den är svagt magnetisk och partiet med avtryck mot vägg är magnetiskt.

I tvärsnitt (fig. 51) framträder en mycket homogen slagg som huvudsakligen är tät. Ställvis förekommer dock även större porer. I slaggens nedre del finns en ansamling av svampigt metalliskt järn, ca 38 mm bred och 10 mm hög.

Undersökning i mikroskop
Det undersökta tvärsnittet, i skållans nedre halva, är tämligen homogent uppbyggt. Slaggen är tämligen grovkornig och domineras av olivin (fig. 52). Dendritisk wüstit och en glasfas förekommer i mindre mängder.
I de nedre delarna förekommer även leucit sporadiskt. Metalliskt järn förekommer mycket sparsamt och endast som mycket små droppar.

Den större koncentrationen av metalliskt järn domineras av ferrit, möjligen med små nitridnålar lokalt. I järnet finns också inneslutna slagg som är av liknande sammansättning och kornstorlek som i den omgivande slagen, dvs. olivin, glas och järnoxider.

Figur 51. MC, Fnr 16, smidesskållan i tvärsnitt. Nere till höger syns en större koncentration av metalliskt järn.

Figur 52. MC, Fnr 16 i mikroskop. Översikt på slaggets övre delar. Likt många andra slager innehåller den wüstit, olivin och en glasfas, men mängden olivin är relativt hög.

MC, Fnr 18

Okulär granskning

Intakt, plan-konvex smidesskälla. Vikt: 391 g. Formen i plan är oval. Skällan är 110 mm i diameter och 25 mm tjock. Ovansidan är ojämn och har på ena sidan (fig. 53) en något förhöjd yta med gräbränt och smält material (blästeringång?), undersidan är slät. Kolavtryck finns på

Slaggen är delad parallellt med sidan som sitter mot vägg, dvs. snittet går ej genom den brända leran. I snittet finns en homogen uppbyggd slagg (fig. 54) som är porös i botten och tätare högre upp.

Undersökning i mikroskop

Figur 53. MC, Fnr 18, smidesskålla med avtryck efter förmodad blästeringång i bildens övre del.

Figur 54. MC, Fnr 18, smidesskållan i tvärsnitt.
Figur 55. MC, Fnr 18 i mikroskop. Översikt på slaggens nedre delar. Här förekommer wüstit, olivin och glas i något varierande proportioner.

Figur 56. MC, Fnr 19, smidesskålla 1 i tvärsnitt.

MC, Fnr 19

Oklägranskning

Fyndposten består av tre smidesskållor. Den minsta smidesskållan (1) är intakt och konvex-konvex. Vikt: 547 g. Formen i plan är oval. Skållan är 110 mm i diameter och 40 mm tjock. Övansidan är slät och undersidan är relativt slät. Enstaka kolavtryck finns på ovansidan, samt i något större mängd på undersidan. Skållan har rostbrun och gulbrun färg.

Smidesskålla 1 är svagt magnetisk. I tvärsnitt (fig. 56) syns en mestadels homogen slagg med något större porer allra överst, men i övrigt är porerna betydligt mindre. Denna skålla har valts för kemiska analyser och undersökning i mikroskop.

Smidesskålla 2 är svagt magnetisk. I delat tvärsnitt syns att skållan är
uppbyggd av ätminstone två olika material. Nederst förekommer egentlig slagg upp till en höjd som gör skållan plan-konvex. Över detta finns en påbyggnad med mycket sekundärt material, kolstycken och silikatiskt material.

Undersökning i mikroskop

Tabell 4. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggerna från Ljudöse.

<table>
<thead>
<tr>
<th>Område</th>
<th>Nr</th>
<th>Kommentar</th>
<th>Okulär observation</th>
<th>Observation i mikroskop</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK</td>
<td>169</td>
<td>Del av större skålla</td>
<td>Del av smidesskålla, homogen i tvärnitt. Tat. Grönårigt inslag.</td>
<td>Domneras av wu, grovdendritisk, lite ol + gl. Droppar av koppar lokalt! Inget metalliskt järn</td>
</tr>
<tr>
<td>MK</td>
<td>320</td>
<td>Del av skålla (?), avvikande översida</td>
<td>Del av smidesskålla, homogen i tvärnitt. Något porösare än MK 169</td>
<td>Homogen, wüstidominerad. Inget metalliskt järn eller koppar.</td>
</tr>
<tr>
<td>MK</td>
<td>600</td>
<td>Skålla nr 2 (av 2)</td>
<td>Skålla nr 2 har centralt en större koncentration av svampigt metalliskt järn</td>
<td>Relativt homogen. Nåstan bara järnoxid, ätminstone magnetit + wüstit, ev. fler. Glodskalsliknande bildningar fastkittade</td>
</tr>
<tr>
<td>MG</td>
<td>283a</td>
<td>Oregelbunden slaggklump</td>
<td>Oregelbunden skålla, central försänkning. Homogen uppbyggd i tvärnitt.</td>
<td>Relativt homogen. Liknar MG283a, något grövre. Mer sekundära bildningar. Mer inmält glasigt material</td>
</tr>
<tr>
<td>MG</td>
<td>329</td>
<td>Oregelbunden slaggklump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>572e</td>
<td>Slaggfragment, ej skålla</td>
<td>Oregelbunden slagg. Jfr 283a</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>584e</td>
<td>Oregelbunden slaggklump</td>
<td>Oregelbunden slagg. Mestadels</td>
<td></td>
</tr>
<tr>
<td>Område</td>
<td>Nr</td>
<td>Kommentar</td>
<td>Område Nr</td>
<td>Kommentar</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Kemiska analyser

Analysbakgrund

I den inledande texten om analyser och analysmetoder har vi beskrivit möjligheter och svårigheter med tillämpning av kemiska analysmetoder på smidesslagger. Vi diskuterade också den komplexitet som ligger bakom hela processkedjan från malm till föremål och de slagger som bildas vid flera av dessa processer och hur slaggerna kan användas i tolkningen av processerna och råvarornas ursprung. För att kunna tolka och utvärdera analyseresultaten behandlar vi här ytterligare några förutsättningar.

Smide jämfört med framställning och råvara – en saknad pusselbit

Att analysera smidesslagger för att försöka korrelera med malmor och reduktionsslagger medför att det saknas information om ett led och en produkt i kedjan. Under järnframställningsprocessen fördelar sig

I jämförelsematerialet ingår också platser där järnförmånen är äldre än de aktuella städernas slaggen. Dessa har inkluderats ändå eftersom deras kemiska sammansättning, oavsett datering, speglar respektive regions malmer och hur slaggarna som bildas vid användandet av dessa, ser ut ur ett kemiskt perspektiv. Det är också värdefullt att ta med dessa för att se vilken fördelning av kemisk sammansättning som finns inom området, och om det över huvudtaget är realistiskt att försöka urskilja vissa ursprungsområden. Till sist vill vi nämnna att vi inom ramen för denna studie endast har jämfört med material från områden i dagens Sverige.

Analysresultat

Resultat i korthet

Resultaten från analyserna återges i sin helhet i tabellform (tabell 5). Huvudämnen presenteras enligt konventionellt sätt som oxidrar där det järn även har räknats om till FeO även om järnet förekommer i många olika konstellationer. Spårämnen presenteras i en egen del som rena element i mg/kg, också på konventionellt sätt. Koppar har ej ingått i den
använda analysrutinen (se metodtext) men är observerat i flera slagger med hjälp av andra metoder. För att kunna jämföra de olika ämnena har diagram används där huvud- och/eller spårämnen har jämförts parvis. Vi kommer att behandla en del av dem mer ingående nedan.

Ämnen som förekommer i betydligt lägre halter, s.k. spårämnen (nedre delen av tabell 5) kan vara av betydelse för att jämföra slagger med varandra och malmer för att se om det finns ett gemensamt ursprung, och om detta kan kopplas till någon specifik geologisk/geografisk miljö.

Figur 57. Jämförelse av slaggernas innehåll av mangan (som MnO) och magnesium (som MgO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och reaktionsslaggen TM16858 (fylld cirkel).
Ett drag som är utmärkande och genomgående för slaggar från såväl Visby som Lödöse är att de innehåller tämligen låga halter av alla ämnen utom kisel och järn. En del av dem har till och med riktigt höga järnhalter vilket också framgår av den petrografiska undersökningen i mikroskop som wüstitrika slaggar. Sådana höga järnhalter skulle också kunna innebära att slaggar har tillskott av oxiderat metalliskt järn, vilket i så fall försvårar möjligheten att använda dem som indikatorer på ursprung, eftersom reduktionsslaggens och följaktligen malmens signatur då har minskats. De flesta slaggar har dock tolkats som primärmidesslaggar och använts i de fortsatta tolkningarna.

Manganhalten når inte över 1 viktsprocent MnO i någon av smidesslaggerna (fig. 57). Endast reduktionsslaggen från Stenkumla socken på Gotland har högre halter (ca 3 % MnO). De tämligen låga manganhaltarna indikerar följaktligen att det är manganfattiga malmer som har använts, under förutsättning att de analyserade slaggarna till stora delar har ärvit reduktionsslaggernas sammansättning.

Magnesiumhalten ligger på samma storleksordning, dvs. mestadels några viktsprocent MgO i de allra flesta slaggerna (fig. 57). Även fosforhalten ligger på några tiondels viktsprocent (som P₂O₅) för de flesta slaggerna (fig. 58). I en slagg (MG283a från Lödöse) når den ca 1 %. En slagg från...
Visby (Fnr 507 från Kaplanen 8) har emellertid 10 gånger så högt fosforinnehåll. Denna slagg har dock också extremt högt kalciuminnehåll i kombination med lägt järninnehåll och representerar dock inte samma process som de övriga slaggerna och bör inte heller ingå i samma typ av utvärderings arbete.

Spårämnesinnehållet i slaggerna är mestadels också lågt och det finns stora likheter mellan slagger från de båda städerna. En del ämnen förefaller dock skilja sig åt mellan städerna och vi återkommer lite mer detaljerat kring detta genom att specialstudera t.ex. krom och vanadin, liksom de sällsynta jordartsmetallerna.

Resultat i jämförelse med smidesslagger från andra platser

Som framgår av tabell 5 finns många likheter mellan slaggerna i Visby respektive Lödöse, men även mellan de båda städerna. De variationer som uppträder inom Visby motsvarar av en variation av samma storleksordning i Lödöse, även om undantag finns, t.ex. vad gäller fosfor och kalcium. Intressant är därför att också jämföra med slagger av liknande typ, mer eller mindre samtida, huvudsakligen från andra städer.

I figurerna 59–61 kan vi notera att såväl mangan och magnesium som fosfor och kalcium, liksom spårämnen, krom och vanadin förekommer i motsvarande låga halter i många av referensslaggerna från smidet.

![Diagram](image-url)

Figur 60. Jämförelse av slaggernas innehåll av fosfor (som P_2O_5) och kalcium (som CaO). Data från figur 58 samt referensdata för smidesslagger (se text för referenser). Axlarne är något beskurna för att tydligt illustrera de aktuella slaggerna.

Två ämnen som skiljer Visbys slagger från Lödöses är kalciuminnehållet, som är högre i slaggerna från Visby, som grupp och fosforinnehållet som generellt är högre i Lödöses slagger. Om vi jämför med smidesslagger från andra områden (fig. 60) ser vi att dessa värden inte är unika utan att det förekommer motsvarande halter även från andra platser.

I diagrammen (fig. 59–60) finns också några analysresultat från slagginslutningar i järn (Buchwald 2008) bland annat från Lödöse. Där framkommer att det finns föremål med slagginslutningar med en sammansättning som markant avviker från de analyserade slaggerna från samma plats, dvs. de visar att det finns flera olika ursprung för järnet på en och samma plats.
Järnsmide i Visby och Lödöse

Figur 61. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för smidesslagger (se text för referenser).
Kromhalten är lägre i slaggerna från Lödöse än i slaggerna från Visby, för samma vanadinhalt.

Resultat i jämförelse med malmer
Bland slaggerna i Visby påträffades, som nämnts i inledningen, också några malmklumpar som av experter bedömts komma från Utö gruvor. Vi har redan diskuterat effekterna av en sådan förekomst för den anmärkningsvärt tidiga gruvbrytningen klumparna indirekt signalerar. Likaså skapar malmförekomsten en inkonsekvens i processleden i smidet i staden med en förväntad samtida hytta som först borde ha producerat ett järn som sedan smiddes vidare – vilket inte är rimligt i sammanhanget. Frågan är om det är möjligt att med hjälp av de kemiska analysresultaten klarlägga detta ytterligare.

bland de senare. De flesta bergmalmer har betydligt högre halter av magnesium, även malmen från Utö, än vad slaggerna har. De limonitiska malmerna sprider över en stor variation i manganinnehållet (även högre än som visas i diagrammet) där de analyserade slaggerna visar låga halter. För fosfor och calcium (fig. 63) ser vi att slaggerna från Visby uppvisar halter på samma nivå som bergmalmerna vad gäller calcium, men fosforinnehållet är som regel mycket lågt i bergmalmer (undantag från ett område i Dalarna i diagrammet). Malmen från Utö kan inte korreleras med de analyserade slaggerna med utgångspunkt i deras kemiska sammansättning.

Bland spårämnen kan vi inledningsvis notera att uppgifterna i referenser är färre. Bland dem som finns visar några regioner högre halter av t.ex. vanadin (Halland) dels att andra regioner som Skåne och Småland har malmer med likartad krom- och vanadinhalt som de analyserade slaggerna (fig. 64). För de få bergmalmer som har uppgifter om spårämnen är kromhalten mestadels låg medan vanadininnehållet är av samma storleksordning som i de analyserade slaggerna.

![Diagram](image-url)

66 UV GAL Rapport 2012:12. Geoarkeologisk undersökning
Figur 63. Jämförelse av slaggernas innehåll av fosfor (som \(P_2O_5 \)) och kalcium (som \(CaO \)). Data från figur 58 samt referensdata för malmerna (se text för referenser). Bergmalmer varierar generellt i kalciumsammansättning, längs x-axeln, medan de limonitiska malmerna varierar i fosforinnehåll längs y-axeln. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring. Axilarna har utökats för att täcka en större mängd referensdata.

En detalj att ha i åtanke när man jämför spårämnen är att en del av dessa ämnen fördelar sig mellan slagg och järn, en del koncentreras i slaggen medan ytterligare andra företrädesvis hamnar i järnet. Till de senare hör t.ex. kobolt, nickel, krom och vanadin. Det har dock tidigare visat sig (t.ex. utvärdering av GALs databas) att de förekommer i varierande halter även i slagger varför ett högt innehåll av någon av dem visar att ämnet även måste ha funnits i förhållandevis höga halter även i malmen.
Figur 64. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för limonitiska malmor i södra Sverige (se text för referenser), varav några med betydligt högre vanadinninnehåll. Endast ett fåtal bergmalmer i referenserna har uppgift om dessa ämnen; i dessa fall med låga halter. Visbys respektive Lödös respektive slager är schematiskt markerade med en blå respektive röd ring som omfattar de flesta slaggerna från respektive plats. Ett fåtal plottar dock utanför respektive område.

Resultat i jämförelse med reduktionssläggar
En förutsättning för att kunna relatera smidesslägger till ursprungsområde är att de också ärver reduktionssläggers kemiska sammansättning. Även om det inte är fråga om identiska absoluta halter bör proportionerna mellan flera specifika ämnen bibehållas under processernas gång. Detta kan studeras med hjälp av kvoter mellan ämnen eller i de diagram vi använt ovan genom att se om ämnena är relaterade till varandra i en grupp av slagg, dvs. om ett ämne ökar bör det relaterade ämnet också öka längs en linje i diagrammet. Slagg med kemisk likhet följer då samma linje, medan andra slagg kan följa en linje med annan lutning. Alternativt kan ett ämne variera medan ett annat är mer eller mindre konstant. Eftersom reduktionsslägger från järnframställning är de som främst har analyserats i många tidigare undersökningar finns här ett betydligt större referensmaterial och det är möjligt att relatera till detta. Som ett urval kan vi fortsätta att jämföra samma ämnen som vi redan har
belyst, dvs. mangan, magnesium, fosfor, kalcium, vanadin och krom. En kort studie av sällsynta jordartsmetaller kommer också att visas.

Det finns en stor mängd reduktionsslager analyserade och även om det är fördelaktigt med stora datamängder kan det ibland vara svårt att urskilja något i en stor mängd. Vi har valt slager från stora delar av södra Sverige som jämförelse, oavsett om de är från rätt tidsperiod eller ej (se diskussion ovan) och delat in dem efter landskap. En sådan administrativ inledning är möjligen inte den mest optimala indelningen, men utgör ett bra redskap för att komma vidare i tolkningen.

Exemplet mangan och magnesium

För att ytterligare kunna urskilja om det finns karaktäristiska drag för slagger från olika regioner beskär vi axlarna ytterligare och studerar ett mindre antal landskap i taget. Ett område som har föreslagits som
produktionsområde (se inledningstexten) är Småland. I figurerna 67–71 framgår att det finns skillnader mellan olika områden i Småland, där gränstrakterna med Skåne och Halland inte överensstämmer med slaggerna från Visby eller Lüdöse, medan slagger från området söder om Kalmar visar mer likheter. I figurtexerna (fig. 67–71) beskrivs utförligare på vilket sätt slagger från de olika landskapen skiljer sig från, eller har likheter med, de nu analyserade slaggerna från Visby och Lüdöse.

![Diagram med slagger från olika områden](image)

Exemplet fosfor och kalcium

På motsvarande sätt som vi har jämfört mangan och magnesium, kan vi studera förhållandet mellan fosfor och kalcium. En första översikt (fig. 72) visar att slaggerna från Visby har ett högt kalciuminnehåll i kombination med lägt fosforinnehåll. Liknande halter förekommer inte mer än i några få reduktionsslagger från järnframställning i det aktuella referens materialet. En möjlig förklaring till detta är att smidesslaggerna i Visby inte direkt kan knytas till reduktionsslager från blästugnar, utan bör relateras till andra processer, och/eller att kalcium har tillsatts under processens gång. Slaggerna från Lödöse däremot, har innehåll av kalcium i förhållande till fosfor som förekommer i en stor mängd slaggar från flera regioner. I figurtexterna (fig. 73–77) finns mer detaljer kring skillnader och likheter mellan de nu analyserade slaggerna och referens materialet.

Figur 74. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slagger från Skåne. Slagger från två lokaler (Ö. Spång och Bredabäck) i gränstrakten mot Halland och Småland är markerade med dubbel symbol. Dessa uppvisar liknande sammansättningsintervall som slaggerna från Lödöse. Flertalet av de övriga har tydligt högre fosforinnehåll, även slagger från östra Skåne (Bromölla; ring).

Exemplet krom och vanadin
Tidigare har vi också jämfört spårämnen krom och vanadin, med förbehållet att dessa ämnen går in även i det tillverkade metalliska järnet. Som berörts ovan förekommer det dock slagger med tämligen höga vanadinhalter – flera hundra mg/kg – varför förekommer slånande även i slagger. I figur 78 ser vi exempel på det från Småland, främst Markarydsområdet, men även närliggande områden i Skåne samt från Halland. En stor andel slagger har dock betydligt lägre vanadininnehåll, av samma storleksordning som slaggerna från Visby och Lödöse, och många har en liknande variation i krominnehåll. Ett fåtal slagger från Östergötland uppvisar dock ett betydligt högre krominnehåll.

I figurexterna (fig. 79–83) återges jämförelserna med slagger från de olika landskapen mer detaljerat. Jämförelsematerialet är något reducerat eftersom en del äldre analyser inte har inkluderat dessa ämnen.
Figur 78. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från figur 61 samt referensdata för reduktionsslager huvudsakligen från sydligaste Sverige, men även exempel från Dalarna och Gästrikland. Diagrammet visar att många slager är koncentrerade kring halter under 100 mg/kg krom och under 400 mg/kg vanadin. Ett fåtal slager från Östergötland har högre krominnehåll. Från Småland, Skåne och Halland finns ett antal slager med betydligt högre vanadininnehåll. Många av dessa kommer från närbelägna platser i gränstrakterna mellan landskapen. Den nu analyserade reduktionsslagen från Gotland har också tåmligen högt innehåll av vanadin. I följande diagram visas slager från ett eller ett fåtal landskap åt gången för att lättare kunna urskilja eventuella skillnader och likheter.

Exemplet sällsynta jordartsmetaller
Andra ämnen som förekommer i slaggerna är de sällsynta jordartsmetalerna (lantan (La) till lutetium (Lu)). De förekommer i låga halter och har, sannolikt, ingen effekt på processen eller järnet, men är användbara ur ett annat perspektiv. De sällsynta jordartsmetalerna följer varandra som grupp och har därmed förväntad inbördes positiv korrelation, och är knutna till olika geologiska miljöer. Några ämnen kan dock vara anrikade, eller urlakade, i förhållande till de andra. Detta gäller bland annat cerium (Ce) som då sägs visa en positiv eller negativ anomali jämfört med övriga. Likaså kan relationen mellan gruppen av tyngre (med högre atomnummer, Ga-Lu, HREE) respektive lättare jordartsmetaller (med lägre atomnummer, La-Sm, LREE) spegla skillnader i anrikning och urlakning i bildningsmiljö. Dessa proportioner förväntas också ärvas av slaggerna i järnframställningsprocessen. Smidesslagger som är uppbrygda av slagg från tidigare processled kan därmed förväntas ha samma proportioner. Om metalliskt järn har bidragit till slaggernas sammansättning kan det sänka det totala innehållet av sällsynta
jordartsmetaller eftersom metallen är fattigare på dessa ämnen. Om tillsättning av t.ex. sand har använts kan detta också spåda ut den absoluta halten av de sällsventa jordartsmetallerna, men denna effekt har vi ovan ansett vara marginell. Därför bedömer vi det som rimligt att försöka använda även de sällsventa jordartsmetallerna som ett hjälpmedel. Om vi inledningsvis jämför två av de lätta sällsventa jordartsmetallerna med varandra, cerium och lantan, ser vi att slaggerna visar en förväntad ökad ceriumhalt för ökad lantanhalt, men att förhållandena inte är identiska (fig. 84). Med hjälp av två linjer kan vi anta att det finns flera olika, minst två, proportioner mellan de båda ämnen. Om vi jämför resultaten med de reduktionsslaggen vi tidigare har studerat ser vi till att börja med att de absoluta halterna av både cerium och lantan är låga eller mycket låga jämfört med många av slaggerna i referensmaterialet (fig. 85). Dessutom finns flera proportioner mellan de båda ämnen, som även här kan illustreras med två schematiskt dragna linjer. Om vi studerar ett utsnitt av diagrammet med ett urval av slagger (fig. 86) kan vi se att slagger från Östergötland och Småland följer båda linjerna. Slagger från Halland och Västergötland förefaller väsentligen följa linjen med flackast lutning, den linje som också merparten av slaggerna från Visby och Lödöse följer.

Figur 85. Jämförelse av slaggernas innehåll av de sällsventa jordartsmetallerna lantan och cerium. Slagger från Visby och Lödöse har låga eller mycket låga absoluta halter av både cerium och lantan jämfört med många av slaggerna i referensmaterialet.
Figur 86. Detalj ur föregående figur med ett urval av slagger för jämförelse, utan de aktuella slaggerna från Visby och Lödöse. Liksom i figur 84 visar två schematiska linjer skillnader i proportioner mellan cerium och lantan. Slagger från Småland och Östergötland finns längs båda linjerna medan slagge r från Västergötland mestadels följer linjen med flackast lutning.

Skillnaderna mellan linjerna kan beskrivas i en annan typ av diagram (fig. 87–88) där samtliga sällsynta jordartsmetaller plottas. På konventionellt sätt har de absoluta halterna normaliserats mot ett referensprov. Till vänster i diagrammet, som ämne nummer två förekommer cerium (Ce; nr 58) som kan följa linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, eller visa en topp (positiv anomali) eller nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali. Det senare gäller för alla slagger. För cerium ser vi dock skillnader mellan slaggerna där några har en positiv anomali av olika grad, andra nästan ingen anomali alls och ett fåtal en svag negativ anomali. Det innebär att det inte är möjligt med en och samma leverantör.
av järnet utan flera är nödvändiga. I detalj (fig. 88) ser vi att positiv anomali förekommer i slagter från både Visby och Lödöse.

Slagter med positiv anomali i detta diagram motsvarar de med brantast lutning i figurerne 84–86. Den variation i huvudämnen och spårämnen som vi tidigare har noterat gäller för de båda städerna, framträder följaktligen även i de sällsynta jordartsmetallerna. Ett resultat som ger stöd till tolkningen om att det finns flera produktionsområden som har levererat järnet som smiddes vidare.

![Diagram](image)

Figur 87. Sällsynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slagter följer linjen från det första ämnet lanthan (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali för alla slagter.
Sammanfattning och utvärdering av de kemiska analyserna

Med hjälp av de ovanstående diagrammen och jämförelserna med olika områden kan vi göra några sammanfattande utvärderingar där en del områden uppvisar konsekvent likhet eller skillnad med utgångspunkt i de jämförda ämnena. Andra områden ger en mindre tydlig bild där några ämnena visar stor likhet, medan andra visar att ett järnproduktionsområde som vid en första anblick förefaller rimligt, är mindre troligt med utgångspunkt i andra ämnena.

Om vi lägger till resultaten av jämförelsen av spårämnesinnehållet kan vi notera att de slagger från gränsområdet mellan Småland, Skåne och Halland som har avvikande innehåll vad gäller huvudämnen mangan, magnesium och fosfor också tydligt skiljer sig från sladdafierna från Visby och Lödöse vad gäller innehållet av spårämnen, framförallt vanadin. För mangan, magnesium och fosfor var detta tydligt för slaggerna främst på skånska och småländska sidan om gränsen, från tidig medeltid och framåt, medan de halländska visar mer överensstämmelse i fråga om dessa ämnen. När även spårämnen är inkluderade i jämförelsen ser vi att även dessa skiljer sig från Visbys och Lödöses slagger. Här ska vi dock ha i åtanke att det finns slagger från Halland som inte har analyserats med avseende på spärelementsammansättningen varför detta kan behöva undersökas ytterligare.

Bland övriga slagger från Skåne har vi berört bland annat de östra delarna, med främst slagger från äldre järnålder i Bromölla där stora likheter finns vad gäller innehållet av mangan, magnesium, krom och vanadin, men skillnader finns vad gäller fosforinnehållet.

Slagger från Västergötland som ingår i referensmaterialet är visserligen huvudsakligen äldre eller betydligt äldre än materialet från de undersökta städerna men visar många likheter i fråga om kemisk
sammansättning. Med tanke på att det också finns järnframställning av yngre datum vore det intressant att analysera slagger även från denna produktion för att se om det finns motsvarande överensstämmelser där. Däremot finns det inte korrelation med slagger från en tidig masugn i Hyttehamn längs Vätterns västra strand.

Vi har också jämfört med slagger från Närke och Östergötland som avviker i större omfattning från slaggerna från Lödöse och Visby. Det finns variationer i slaggmaterialet från båda dessa landskap och variationerna är till viss del mycket lokala. Bland annat finns det slagger från samma socken i Närke som skiljer sig markant åt vad gäller innehål av såväl huvudämnen som spärrämnen. Även om ett fåtal slagger från dessa landskap visar likheter med slaggerna från Visby och Lödöse (ett fåtal) så förefaller området vara mindre intressant som ursprungsområde.

Tolkning och diskussion

Undersökningen och analyserna av slaggerna från smidet i Visby och Lödöse har visat en del förväntade resultat men också en del oväntade observationer som har inneburit alternativa tolkningsmöjligheter och förslag till detaljer i järnhantverkets processer som inte vanligen omtalas.

Inledningsvis planerade vi att välja slagger för analys som var lämpliga för att spåra ursprunget på järnet, såväl var det framställts, ur vilken typ av malm, och med vilken process. Med utgångspunkt i tidigare publikationer kring slagger i de båda städerna och annat tillgängligt dokumentationsmaterial gjordes en prioritering också för att få en god kronologisk täckning inom både Visbys och Lödöses järnsmiden. När urvalet skulle göras visade det sig att en del slaggmaterialet inte gick att finna varför en omprioritering fick göras. Vi bedömer dock att de ursprungliga frågeställningarna kring processled och teknik, ursprung och relation till kronologi fortfarande var relevant, men något förändrade jämfört med utgångsplanen. När vi tolkar resultaten är det viktigt att ha urvalsprincipen i åtanke.

Slaggernas morfologi

Från flera kvarter i Visby har vi analyserat slagger av formmässigt två huvudtyper. Den ena är de så karakteristiska plankonvexa smidesslaggerna. En del är visserligen inte helt plana på övertytan utan är något konkava eller konvexa, men är ändå av samma typ. Den andra typen av slagg är oregelbundna strängflutna slagger där flera tunna slaggflöden överlagrar varandra. Detta utseende ser vi främst inom järnframställningen, antingen som de karakteristiska stearinformade
slagger som samlas i blästugnarnas slaggropar, rakt under lunnen, eller de slagger som tappas ut ur luppen under järnförarbeidningen. För dessa var det viktigt att avgöra vilket processled de kommer från. Som referens till Visbys slagger, analyserades också en slagg från järnförarbeidning under järnåldern. Denna slagg kommer från Stenkumla socken på Gotland.

Från Lödöse gjorde vi ett urval som i princip enbart omfattade de karaktäristiska skällorna. Det är dock viktigt att påpeka att andra slaggtyper saknades i materialet i museets magasin. Övrigt material omfattade främst järnrik klumpar och smält keramiskt material, dvs. inget av det är slagger. Om det bevarade materialet i museets magasin är representativt för vad som har funnits eller om de karaktäristiska skällorna prioriterades vid arkeologiska undersökningarna är inte känt. Skällor av olika storlek förekommer, möjligen relaterat till olika delområden i staden men denna fråga har inte utretts specifikt i denna undersökning. Det finns dock slagger från Lödöse som är större än de vi har analyserat från Visby. Den största i Lödöse är ca 210 mm i diameter och 60 mm tjock, men flera kring 100–130 mm i diameter förekommer också. De största från Visby är ca 120 mm, i något fall 155 mm i diameter.

I dokumentation kring slagarna i Lödöse nämns flera termor som leder tankarna till järnförarbeidning; t.ex. bottensmältor, myrmalmstackor, gropugnar och ”lerugnar för järnutföring”. Det finns dock inget bevarat material i museet som tyder på att det rör sig om järnförarbeidning.

Processled – primärsmide

Bland de slagger som har analyserats mer detaljerat gör vi tolkningen att de kommer från primärsmide, ett smide där slaggtillnämnande järnluppar från blästugnar har rensats på slagg. Rensningen har inneburit en ursmältning av slagg som blivit innesluten i metallen under förarbeidningsprocessen. Sannansättningssättet liknar denna slagg därför reduktionsslagger varför de uppställda frågeställningarna kring att söka ursprung bedöms vara rimliga att gå vidare med.

Flera av de analyserade skällorna är tämligen homogena uppbyggda, med en sannansättning lik reduktionsslagger. Några av dem uppvisar dock detaljer som indikerar smide, t.ex. olivinkristaller med olika sannansättning i kärnan och ytterkanten vilket uppstår när temperaturen varierar. Andra har skikt av järnoxider magnetit, som bildas istället för wüstit när tillgången på syre är större, vilket den är i en smideshård jämfört med i en blästugn.

Ett fåtal slagger skulle möjlichta kunna vara rester efter sekundärsmede, där ämnesjärn eller föremål smids. En av dem, nr 136 från område MH i Lödöse är rik på järnoxider som skulle ha kunnat bildas vid oxidering av metall. Slaggen innehåller också komponenter som är tydliga för sekundärsmedet i form av glödska. Dessa är dock främst fastkattade i slaggenas yttre delar – men visar att processen har ägt rum.

Möjligen ska vi inte förvänta oss några större slaggmängder från sekundärsmedet i detta sammanhang. Den tolkningen kan diskuteras.
utifrån förloppet under primärsmedet. Troligen har tämligen stora järnluppar, inte klarlagt vilken form, rensats på slagg. Rensningen har sannolikt varit så omfattande att den resulterat i ett tämligen slaggfritt järn, som, när det i sin tur ska formas till föremål, inte genererar så stora mängder slagg.

Process – detaljer (slaggavrinning)

Anledningen till att man valt en teknik för att tappa slagg från smideshärden kan mycket väl vara densamma som i blästugnen, dvs. att man velat fortsätta smidet utan att behöva avbryta processen för att rensa härden på slagg, möjligen för att man har arbetat med tämligen stora luppar.

Koppar och brons i slaggarna
I flera slagger, såväl från Visby som från Lödöse, kunde vi observera förekomst av koppar, eller kopparlegering i större eller mindre omfattning. Koppardroppar är inte det första man förväntar sig i en smidesslagg. Snarare är det metalliskt järn som kan förekomma. Koppar visade sig förekomma i några olika varianter. I något fall observerade vi förekomst av såväl järn- som koppardroppar (varje metall separat, t.ex. i nr 307 från Schweitzergränd). I andra fanns enbart droppar av koppar (Nr 507 från Kaplanen 8), ytterligare andra innehöll komplexa droppar med både järn och koppar (Nr 2315 från Priorn 11). Fenomenet visade sig vara tämligen frekvent och förekommer i slagger från flera kvarter/delområden (fig. 1). Även tidigare analyser av slaggar från Visby
har noterat liknande förekomster (Kresten 1995) av koppar från flera kvarter men också brons (från Priorn 4).

För att utreda dropparnas sammansättning mer exakt analyserades ett fåtal. Från Visby noterades förekomst av koppar med innehåll av järn (få procent) liksom järn med innehåll av koppar. Kopparens sammansättning är i storleksordningen densamma som råkoppar har, dvs. innan kopparen har garats för att renas en sista gång.

I slaggerna från Lödöse är det, enligt de detaljerade analyserna av två av dem, brons med tennhalt på ca 6 respektive 10 procent som förekommer. Möjliggen finns andra sammansättningar bland dem som inte har analyserats.

Det tidigare omnämda smidet vid Lundströms Plats i Jönköping uppmuntrade också förekomst av koppardroppar i slagen (Grandin 2009). Även från Sigtuna har koppar, med liknande järninnehåll, samt brons noterats i smidesskållor från medeltid (Hjärthner-Holdar & Larsson 1997).

Men, är det rimligt när det rör sig om primärsmedesslagger, dvs. slagger som bildats när en slaggförande lupp har rensats på sin slagg. Här måste andra möjligheter diskuteras. En av dem leder oss till ursprunget på järnet vad gäller malmen och eventuellt kopparinnehåll. I blästjärnstillverkningen är det främst sjö- och myrmalmor eller rödhjord som har använts och dessa är mestadels mycket låga vald gård kopparhalt varför detta inte är en trolig förklaring. Alternativet att det är en bergmalm som har använts och att denna är kopparhaltig kan vi också diskutera kring. De bergmalmor som har använts i järnframställning är järnoxider, medan kopparmalmerna i Sverige huvudsakligen är sulfidmalmer, med innehåll av både koppar och järn. Sulfidmalmer har dock inte prioriterats i järnframställningen, av flera anledningar. Teoretiskt skulle vi kunna tänka oss att kopparföremaket i slaggorna har sitt ursprung i malmen, men i de fall det förekommer brons i slagen är detta inte något alternativ. I kopparmalmer finns visserligen flera spårämnen som vi kan se i analyserna (t.ex. antimon), men tenn ska vi inte förvänta oss. Föremakten av bronstdroppar i slaggorna kan därmed inte förklaras med kopparföremakten i den använda järnmalmen. Kan vi istället tänka oss tillsättning av koppar/brons vid något skede av processen? Och i så fall av vilken anledning? Vid
Järnframställningsexperimenten vid Nya Lapphyttan i Norberg har man som rutin att tillsätta koppar i små mängder, något eller några tiotals gram, i forman när man observerar att slaggen börjar "frysa". När koppar har tillsatts flyter slaggen lättare och separeras bättre från metall. Är det samma fenomen som har skett i smidet, inte bara i Visby och Lödöse, utan även på andra platser? Med tanke på att slaggerna, speciellt i Visby, har runnit lätt och det förefaller som om smidesshärden har tappats på slagg har det varit viktigt att kunna kontrollera slaggens flytbarhet. Om lupporna har varit stora och för att slaggrensningen ska fortgå har möjligen tillsättning av koppar i forman underlättat denna process. I samband med experiment in Nya Lapphyttan är det endast små mängder som används, men det fär stor effekt. I Visby ser vi mestadels mikroskopiska droppar. Totalhalten koppar är inte känd i just dessa slagg men i tidigare analyserade smidesslagger med obesvarad koppar varierar det totala kopparinnehållet från 0,03 till 0,08 % CuO, (Kresten 1995), Om denna tolkning är rimlig förefaller det inte ha spelat så stor roll vilket typ av koppar som har använts utan det är snarare tillgängen på material som har stört. I Visby har det funnits råkoppar såväl som brons. I Lödöse, med sitt omfattande kopparlegeringsarbete, har det knappast varit brist på brons.

Ursprunget

De analyserade slaggerna från Visby och Lödöse är samtliga tämligen rena i sin sammansättning, dvs. de har låga halter av många spårrämnen. På så sätt är det möjligt att utestluta de områden som har högre halter av dessa ämnen som möjliga leverantörer. Intressant nog uppvisar slaggerna från de båda städerna likartad variation i sin sammansättning, även om enstaka undantag finns.

Områden som dock inte är rimliga produktionsområden är gränstrakterna mellan Skåne, Småland och Halland där det finns dokumenterad och välundersökt järnframställning från tidig medeltid och framåt och av kronologiska skäl skulle kunna vara tänkbart. Järnframställningsområden i Östergötland och Närke, med medeltida blästjärnsproduktion i det senare, förefaller inte heller vara rimliga järnleverantörer till vare sig Visby eller Lödöse.

Till sist är det viktigt att komma ihåg att referensmaterialet är begränsat. Dels är det avgränsat till järnframställningsområden inom dagens Sverige, dels är det beroende av vilka områden som är undersökta och i vilken mån som analyser har gjorts. Betydligt fler områden är kända, men inte undersökt på samma detaljnivå. Det innebär att även om det finns möjliga områden som har koppling till Lödöse och/eller Visby i det använda referensmaterialet finns det möjlighet att det rör sig om andra produktionsområden, med idag okända sammansättningar på palmer och slagger, som har levererat järn till de båda städerna.

Smidet i Visby och Lödöse i sammanfattning

- Slaggerna representerar huvudsakligen primärsmide, där luppar har rensats på slagg
- Järnet är ursprungligen blästjärn, från sjö-/myrmläm (mindre troligt bergmalm)
- Lupparna kan ha varit stora och smideshärden konstruerad för slagtgattning
- Koppar/brons har tillsatts som en del i processen för att underlätta slaggens flytbarhet för att separera den från järnet.
- Den järnframställning som omnämns i handlingar, främst i Lödöse, finns ej belägg för i slaggmaterialet
- Det finns inga belägg för att malm från Utö har använts för järnframställningen som ligger till grund för smidet i Visby
- Järnet har kommit till de båda städerna från flera leverantörer
<table>
<thead>
<tr>
<th>Prov</th>
<th>P 2315</th>
<th>P 2478</th>
<th>K 507</th>
<th>Sch 307</th>
<th>A 54</th>
<th>Sm 142</th>
<th>Sm 485</th>
<th>St T C5819</th>
<th>TM16858</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>34,0</td>
<td>23,3</td>
<td>32,6</td>
<td>15,9</td>
<td>27,4</td>
<td>21,4</td>
<td>9,86</td>
<td>32,1</td>
<td>29,3</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,118</td>
<td>0,0938</td>
<td>0,175</td>
<td>0,0570</td>
<td>0,0967</td>
<td>0,0535</td>
<td>0,136</td>
<td>0,183</td>
<td>0,0971</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>3,40</td>
<td>2,86</td>
<td>3,62</td>
<td>1,65</td>
<td>2,44</td>
<td>2,06</td>
<td>3,20</td>
<td>4,04</td>
<td>3,54</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>61,3</td>
<td>74,4</td>
<td>25,1</td>
<td>85,1</td>
<td>69,3</td>
<td>81,1</td>
<td>87,3</td>
<td>59,6</td>
<td>67,2</td>
</tr>
<tr>
<td>MnO</td>
<td>0,135</td>
<td>0,710</td>
<td>0,313</td>
<td>0,0787</td>
<td>0,273</td>
<td>0,310</td>
<td>0,707</td>
<td>0,186</td>
<td>2,98</td>
</tr>
<tr>
<td>MgO</td>
<td>0,474</td>
<td>0,530</td>
<td>1,58</td>
<td>0,268</td>
<td>0,711</td>
<td>0,286</td>
<td>0,515</td>
<td>0,500</td>
<td>0,341</td>
</tr>
<tr>
<td>CaO</td>
<td>6,02</td>
<td>4,89</td>
<td>23,0</td>
<td>1,47</td>
<td>6,24</td>
<td>2,22</td>
<td>3,55</td>
<td>7,33</td>
<td>2,93</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0,548</td>
<td>0,427</td>
<td>0,958</td>
<td>0,152</td>
<td>0,472</td>
<td>0,299</td>
<td>0,191</td>
<td>0,594</td>
<td>0,396</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1,29</td>
<td>1,13</td>
<td>1,82</td>
<td>0,276</td>
<td>1,11</td>
<td>0,638</td>
<td>0,518</td>
<td>1,38</td>
<td>0,861</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0,186</td>
<td>0,399</td>
<td>10,7</td>
<td>0,305</td>
<td>0,387</td>
<td>0,249</td>
<td>0,436</td>
<td>0,453</td>
<td>0,151</td>
</tr>
<tr>
<td>Glödförlust</td>
<td>-5,40</td>
<td>-6,70</td>
<td>-3,10</td>
<td>-4,10</td>
<td>-6,30</td>
<td>-7,90</td>
<td>-5,80</td>
<td>-4,70</td>
<td>-6,40</td>
</tr>
<tr>
<td>Summa</td>
<td>102</td>
<td>102</td>
<td>96,8</td>
<td>101</td>
<td>102</td>
<td>101</td>
<td>101</td>
<td>102</td>
<td>101</td>
</tr>
<tr>
<td>FeO</td>
<td>50,3</td>
<td>60,9</td>
<td>19,8</td>
<td>72,9</td>
<td>56,7</td>
<td>65,9</td>
<td>73,4</td>
<td>49,4</td>
<td>54,7</td>
</tr>
<tr>
<td>Be</td>
<td>3,37</td>
<td>4,58</td>
<td>1,66</td>
<td>2,77</td>
<td>2,68</td>
<td>3,41</td>
<td>5,75</td>
<td>2,72</td>
<td>5,82</td>
</tr>
<tr>
<td>Sc</td>
<td>2,70</td>
<td><1</td>
<td>6,50</td>
<td><1</td>
<td>3,21</td>
<td><1</td>
<td>4,40</td>
<td><1</td>
<td>10,6</td>
</tr>
<tr>
<td>V</td>
<td>77,7</td>
<td>107</td>
<td>60,1</td>
<td>37,9</td>
<td>58,6</td>
<td>80,7</td>
<td>289</td>
<td>46,1</td>
<td>514</td>
</tr>
<tr>
<td>Cr</td>
<td>45,8</td>
<td>75,0</td>
<td>104</td>
<td>19,1</td>
<td>57,8</td>
<td>97,2</td>
<td>76,4</td>
<td>53,8</td>
<td>64,7</td>
</tr>
<tr>
<td>Co</td>
<td>10,8</td>
<td>13,6</td>
<td>20,2</td>
<td>22,1</td>
<td>19,6</td>
<td>31,2</td>
<td>12,7</td>
<td>38,2</td>
<td><6</td>
</tr>
<tr>
<td>Ni</td>
<td>20,4</td>
<td>18,4</td>
<td>47,3</td>
<td>16,5</td>
<td>16,9</td>
<td>26,4</td>
<td>12,5</td>
<td>46,4</td>
<td>26,2</td>
</tr>
<tr>
<td>Ga</td>
<td>5,05</td>
<td>4,86</td>
<td>4,96</td>
<td>5,22</td>
<td>5,51</td>
<td>4,43</td>
<td>4,04</td>
<td>7,87</td>
<td>3,00</td>
</tr>
<tr>
<td>Rb</td>
<td>31,9</td>
<td>22,5</td>
<td>41,1</td>
<td>7,82</td>
<td>22,3</td>
<td>17,4</td>
<td>15,3</td>
<td>31,5</td>
<td>27,0</td>
</tr>
<tr>
<td>Sr</td>
<td>68,5</td>
<td>85,1</td>
<td>294</td>
<td>24,3</td>
<td>83,7</td>
<td>51,6</td>
<td>99,9</td>
<td>107</td>
<td>78,7</td>
</tr>
<tr>
<td>Y</td>
<td>14,4</td>
<td>13,4</td>
<td>12,3</td>
<td>6,40</td>
<td>8,00</td>
<td>8,42</td>
<td>23,9</td>
<td>14,4</td>
<td>181</td>
</tr>
<tr>
<td>Zr</td>
<td>72,9</td>
<td>64,4</td>
<td>115</td>
<td>36,4</td>
<td>77,3</td>
<td>31,9</td>
<td>56,0</td>
<td>115</td>
<td>168</td>
</tr>
<tr>
<td>Nb</td>
<td><6</td>
<td><6</td>
<td>14,2</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>Mo</td>
<td><6</td>
<td><6</td>
<td>12,5</td>
<td><6</td>
<td><6</td>
<td>7,41</td>
<td>6,88</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>Ba</td>
<td>187</td>
<td>338</td>
<td>434</td>
<td>75,5</td>
<td>178</td>
<td>141</td>
<td>277</td>
<td>220</td>
<td>1900</td>
</tr>
<tr>
<td>La</td>
<td>26,9</td>
<td>16,7</td>
<td>14,0</td>
<td>5,93</td>
<td>8,84</td>
<td>9,42</td>
<td>31,2</td>
<td>13,2</td>
<td>167</td>
</tr>
<tr>
<td>Ce</td>
<td>55,1</td>
<td>66,0</td>
<td>35,0</td>
<td>13,8</td>
<td>24,7</td>
<td>36,7</td>
<td>91,5</td>
<td>31,6</td>
<td>273</td>
</tr>
<tr>
<td>Pr</td>
<td>7,56</td>
<td>4,71</td>
<td>3,48</td>
<td>1,24</td>
<td>2,06</td>
<td>2,34</td>
<td>9,96</td>
<td>3,07</td>
<td>39,0</td>
</tr>
<tr>
<td>Nd</td>
<td>26,6</td>
<td>16,8</td>
<td>12,4</td>
<td>4,37</td>
<td>7,13</td>
<td>8,12</td>
<td>36,8</td>
<td>11,1</td>
<td>146</td>
</tr>
<tr>
<td>Sm</td>
<td>4,81</td>
<td>3,27</td>
<td>2,34</td>
<td>0,856</td>
<td>1,46</td>
<td>1,54</td>
<td>7,15</td>
<td>2,27</td>
<td>30,3</td>
</tr>
<tr>
<td>Eu</td>
<td>0,686</td>
<td>0,443</td>
<td>0,452</td>
<td>0,202</td>
<td>0,293</td>
<td>0,241</td>
<td>1,24</td>
<td>0,531</td>
<td>6,35</td>
</tr>
<tr>
<td>Gd</td>
<td>3,85</td>
<td>2,78</td>
<td>2,30</td>
<td>0,871</td>
<td>1,30</td>
<td>1,34</td>
<td>5,78</td>
<td>2,19</td>
<td>32,4</td>
</tr>
<tr>
<td>Tb</td>
<td>0,567</td>
<td>0,418</td>
<td>0,359</td>
<td>0,145</td>
<td>0,210</td>
<td>0,209</td>
<td>0,897</td>
<td>0,356</td>
<td>4,94</td>
</tr>
<tr>
<td>Dy</td>
<td>2,83</td>
<td>2,26</td>
<td>1,88</td>
<td>0,823</td>
<td>1,13</td>
<td>1,09</td>
<td>4,75</td>
<td>1,90</td>
<td>26,5</td>
</tr>
<tr>
<td>Ho</td>
<td>0,591</td>
<td>0,488</td>
<td>0,430</td>
<td>0,190</td>
<td>0,249</td>
<td>0,231</td>
<td>1,06</td>
<td>0,417</td>
<td>5,77</td>
</tr>
<tr>
<td>Er</td>
<td>1,58</td>
<td>1,28</td>
<td>1,17</td>
<td>0,471</td>
<td>0,710</td>
<td>0,651</td>
<td>2,98</td>
<td>1,15</td>
<td>14,7</td>
</tr>
<tr>
<td>Tm</td>
<td>0,229</td>
<td>0,218</td>
<td>0,171</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td>0,459</td>
<td>0,161</td>
<td>2,01</td>
</tr>
<tr>
<td>Yb</td>
<td>1,26</td>
<td>1,22</td>
<td>1,06</td>
<td>0,439</td>
<td>0,677</td>
<td>0,577</td>
<td>2,88</td>
<td>1,01</td>
<td>11,9</td>
</tr>
<tr>
<td>Lu</td>
<td>0,202</td>
<td>0,203</td>
<td>0,171</td>
<td>0,0658</td>
<td>0,107</td>
<td>0,0942</td>
<td>0,818</td>
<td>0,154</td>
<td>1,85</td>
</tr>
<tr>
<td>Hf</td>
<td>1,85</td>
<td>1,60</td>
<td>2,68</td>
<td>0,835</td>
<td>1,69</td>
<td>0,766</td>
<td>1,46</td>
<td>2,69</td>
<td>4,01</td>
</tr>
<tr>
<td>Ta</td>
<td>0,358</td>
<td>0,263</td>
<td>0,481</td>
<td>0,145</td>
<td>0,258</td>
<td>0,185</td>
<td>0,356</td>
<td>0,461</td>
<td>0,346</td>
</tr>
<tr>
<td>W</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
</tr>
<tr>
<td>Th</td>
<td>4,70</td>
<td>4,72</td>
<td>4,02</td>
<td>1,42</td>
<td>2,48</td>
<td>2,28</td>
<td>12,6</td>
<td>3,91</td>
<td>8,40</td>
</tr>
<tr>
<td>U</td>
<td>1,96</td>
<td>2,65</td>
<td>1,17</td>
<td>0,383</td>
<td>0,744</td>
<td>1,49</td>
<td>5,65</td>
<td>0,880</td>
<td>4,03</td>
</tr>
</tbody>
</table>
Tabell 5. Totalhemisk analys av slagger från Lödöse. Den första delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligen återgivet som Fe$_2$O$_3$ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.

<table>
<thead>
<tr>
<th>Prov</th>
<th>MK169</th>
<th>MK320</th>
<th>MH136</th>
<th>MG283a</th>
<th>MM572e</th>
<th>ME2_1</th>
<th>MC16</th>
<th>MC18</th>
<th>MC19_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>17,7</td>
<td>16,1</td>
<td>6,01</td>
<td>24,0</td>
<td>19,4</td>
<td>27,0</td>
<td>26,8</td>
<td>12,1</td>
<td>8,19</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,140</td>
<td>0,102</td>
<td>0,0459</td>
<td>0,139</td>
<td>0,118</td>
<td>0,172</td>
<td>0,134</td>
<td>0,0846</td>
<td>0,0698</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>3,55</td>
<td>3,39</td>
<td>1,47</td>
<td>4,12</td>
<td>3,31</td>
<td>4,57</td>
<td>2,83</td>
<td>2,02</td>
<td>1,39</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>78,1</td>
<td>83,3</td>
<td>95,5</td>
<td>72,1</td>
<td>76,7</td>
<td>64,1</td>
<td>69,5</td>
<td>87,3</td>
<td>93,2</td>
</tr>
<tr>
<td>MnO</td>
<td>0,857</td>
<td>0,360</td>
<td>0,158</td>
<td>0,216</td>
<td>0,158</td>
<td>0,240</td>
<td>0,473</td>
<td>0,181</td>
<td>0,119</td>
</tr>
<tr>
<td>MgO</td>
<td>0,852</td>
<td>0,603</td>
<td>0,576</td>
<td>0,690</td>
<td>0,584</td>
<td>0,955</td>
<td>0,583</td>
<td>0,789</td>
<td>0,367</td>
</tr>
<tr>
<td>CaO</td>
<td>2,65</td>
<td>2,47</td>
<td>2,16</td>
<td>2,82</td>
<td>1,44</td>
<td>1,10</td>
<td>1,10</td>
<td>1,10</td>
<td>1,10</td>
</tr>
<tr>
<td>FeO</td>
<td>64,5</td>
<td>68,7</td>
<td>80,3</td>
<td>60,5</td>
<td>66,5</td>
<td>53,7</td>
<td>57,2</td>
<td>72,5</td>
<td>79,2</td>
</tr>
<tr>
<td>Be</td>
<td>3,63</td>
<td>6,56</td>
<td>3,75</td>
<td>3,09</td>
<td>2,87</td>
<td>2,70</td>
<td>2,98</td>
<td>3,52</td>
<td>3,76</td>
</tr>
<tr>
<td>Sc</td>
<td>2,09</td>
<td>13,1</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>2,04</td>
<td>2,22</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>V</td>
<td>78,7</td>
<td>179</td>
<td>48,7</td>
<td>43,5</td>
<td>57,9</td>
<td>46,1</td>
<td>66,3</td>
<td>50,3</td>
<td>55,4</td>
</tr>
<tr>
<td>Cr</td>
<td>37,4</td>
<td>38,1</td>
<td>28,0</td>
<td>32,5</td>
<td>76,7</td>
<td>26,4</td>
<td>25,3</td>
<td>19,2</td>
<td>26,3</td>
</tr>
<tr>
<td>Co</td>
<td>61,5</td>
<td><6</td>
<td>61,6</td>
<td>24,1</td>
<td>31,5</td>
<td>38,8</td>
<td>89,0</td>
<td>11,2</td>
<td>44,5</td>
</tr>
<tr>
<td>Ni</td>
<td>19,0</td>
<td><10</td>
<td>39,7</td>
<td>14,4</td>
<td>35,1</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td>18,2</td>
</tr>
<tr>
<td>Ga</td>
<td>5,38</td>
<td>3,20</td>
<td>3,14</td>
<td>5,82</td>
<td>12,3</td>
<td>5,49</td>
<td>6,89</td>
<td>16,6</td>
<td>4,88</td>
</tr>
<tr>
<td>Rb</td>
<td>46,6</td>
<td>46,3</td>
<td>21,1</td>
<td>92,1</td>
<td>29,1</td>
<td>77,0</td>
<td>71,4</td>
<td>26,1</td>
<td>22,9</td>
</tr>
<tr>
<td>Sr</td>
<td>169</td>
<td>147</td>
<td>136</td>
<td>213</td>
<td>99,6</td>
<td>265</td>
<td>183</td>
<td>141</td>
<td>55,0</td>
</tr>
<tr>
<td>Y</td>
<td>16,6</td>
<td>152</td>
<td>6,52</td>
<td>14,2</td>
<td>10,9</td>
<td>11,6</td>
<td>8,83</td>
<td>6,12</td>
<td>7,08</td>
</tr>
<tr>
<td>Zr</td>
<td>84,6</td>
<td>105</td>
<td>22,1</td>
<td>97,4</td>
<td>72,4</td>
<td>114</td>
<td>82,0</td>
<td>49,3</td>
<td>49,0</td>
</tr>
<tr>
<td>Nb</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
<td><6</td>
</tr>
<tr>
<td>Mo</td>
<td><6</td>
<td>25,6</td>
<td>26,6</td>
<td><6</td>
<td><6</td>
<td>8,08</td>
<td>11,1</td>
<td><6</td>
<td>15,2</td>
</tr>
<tr>
<td>Ba</td>
<td>501</td>
<td>440</td>
<td>292</td>
<td>538</td>
<td>241</td>
<td>605</td>
<td>526</td>
<td>222</td>
<td>204</td>
</tr>
<tr>
<td>La</td>
<td>18,9</td>
<td>213</td>
<td>5,87</td>
<td>13,0</td>
<td>8,48</td>
<td>11,3</td>
<td>13,1</td>
<td>5,74</td>
<td>6,92</td>
</tr>
<tr>
<td>Ce</td>
<td>66,1</td>
<td>441</td>
<td>19,8</td>
<td>32,4</td>
<td>22,4</td>
<td>27,9</td>
<td>49,5</td>
<td>13,8</td>
<td>19,6</td>
</tr>
<tr>
<td>Pr</td>
<td>5,50</td>
<td>56,2</td>
<td>1,40</td>
<td>3,28</td>
<td>2,01</td>
<td>2,71</td>
<td>3,71</td>
<td><1</td>
<td>1,77</td>
</tr>
<tr>
<td>Nd</td>
<td>19,6</td>
<td>199</td>
<td>5,02</td>
<td>11,5</td>
<td>6,99</td>
<td>9,78</td>
<td>12,9</td>
<td>3,94</td>
<td>6,22</td>
</tr>
<tr>
<td>Sm</td>
<td>3,94</td>
<td>34,1</td>
<td>0,955</td>
<td>2,30</td>
<td>1,38</td>
<td>1,99</td>
<td>2,44</td>
<td>8,23</td>
<td>1,23</td>
</tr>
<tr>
<td>Eu</td>
<td>0,605</td>
<td>5,11</td>
<td>0,139</td>
<td>0,402</td>
<td>0,274</td>
<td>0,380</td>
<td>0,356</td>
<td>0,152</td>
<td>0,149</td>
</tr>
<tr>
<td>Gd</td>
<td>3,38</td>
<td>30,9</td>
<td>0,861</td>
<td>2,16</td>
<td>1,38</td>
<td>1,91</td>
<td>2,02</td>
<td>0,756</td>
<td>1,05</td>
</tr>
<tr>
<td>Tb</td>
<td>0,527</td>
<td>4,53</td>
<td>0,127</td>
<td>0,356</td>
<td>0,220</td>
<td>0,309</td>
<td>0,298</td>
<td>0,116</td>
<td>0,175</td>
</tr>
<tr>
<td>Dy</td>
<td>2,91</td>
<td>23,6</td>
<td>0,669</td>
<td>2,07</td>
<td>1,27</td>
<td>1,85</td>
<td>1,74</td>
<td>0,727</td>
<td>0,954</td>
</tr>
<tr>
<td>Ho</td>
<td>0,625</td>
<td>5,30</td>
<td>0,150</td>
<td>0,477</td>
<td>0,309</td>
<td>0,434</td>
<td>0,379</td>
<td>0,162</td>
<td>0,201</td>
</tr>
<tr>
<td>Er</td>
<td>1,83</td>
<td>14,4</td>
<td>0,423</td>
<td>1,33</td>
<td>0,859</td>
<td>1,22</td>
<td>1,03</td>
<td>0,456</td>
<td>0,599</td>
</tr>
<tr>
<td>Tm</td>
<td>0,268</td>
<td>2,08</td>
<td><0,1</td>
<td>0,199</td>
<td>0,126</td>
<td>0,191</td>
<td>0,170</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>Yb</td>
<td>1,77</td>
<td>13,1</td>
<td>0,372</td>
<td>1,29</td>
<td>0,847</td>
<td>1,27</td>
<td>1,03</td>
<td>0,517</td>
<td>0,573</td>
</tr>
<tr>
<td>Lu</td>
<td>0,267</td>
<td>2,32</td>
<td>0,0789</td>
<td>0,218</td>
<td>0,142</td>
<td>0,193</td>
<td>0,160</td>
<td>0,0739</td>
<td>0,0827</td>
</tr>
<tr>
<td>Hf</td>
<td>2,10</td>
<td>2,70</td>
<td>0,593</td>
<td>2,26</td>
<td>1,69</td>
<td>2,71</td>
<td>2,01</td>
<td>1,16</td>
<td>1,20</td>
</tr>
<tr>
<td>Ta</td>
<td>0,400</td>
<td>0,359</td>
<td>0,121</td>
<td>0,486</td>
<td>0,340</td>
<td>0,559</td>
<td>0,436</td>
<td>0,307</td>
<td>0,206</td>
</tr>
<tr>
<td>W</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
<td><60</td>
</tr>
<tr>
<td>Th</td>
<td>4,15</td>
<td>14,7</td>
<td>1,30</td>
<td>2,95</td>
<td>2,07</td>
<td>3,07</td>
<td>3,45</td>
<td>1,15</td>
<td>1,52</td>
</tr>
<tr>
<td>U</td>
<td>2,09</td>
<td>16,6</td>
<td>0,519</td>
<td>1,23</td>
<td>0,671</td>
<td>1,08</td>
<td>1,14</td>
<td>0,421</td>
<td>0,604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slagg</th>
<th>Ann.</th>
<th>S</th>
<th>Fe</th>
<th>Co</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>As</th>
<th>Ag</th>
<th>Sn</th>
<th>Sb</th>
<th>Au</th>
<th>Pb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visby</td>
<td></td>
</tr>
<tr>
<td>2315_1</td>
<td>Fe-dom</td>
<td>0</td>
<td>103,565</td>
<td>0,157</td>
<td>0,03</td>
<td>0,161</td>
<td>0</td>
<td>0,089</td>
<td>0,022</td>
<td>0</td>
<td>0,053</td>
<td>0,065</td>
<td>0</td>
<td>104,142</td>
</tr>
<tr>
<td>2315_2</td>
<td>Cu-dom</td>
<td>0</td>
<td>1,509</td>
<td>0,051</td>
<td>0,08</td>
<td>98,541</td>
<td>0,032</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,002</td>
<td>100,215</td>
<td></td>
</tr>
<tr>
<td>507_1</td>
<td>Cu-dropp</td>
<td>0,027</td>
<td>0,288</td>
<td>0,004</td>
<td>0,106</td>
<td>97,421</td>
<td>0</td>
<td>0,172</td>
<td>0,395</td>
<td>0,033</td>
<td>0,38</td>
<td>0,009</td>
<td>0,217</td>
<td>99,052</td>
</tr>
<tr>
<td>507_2</td>
<td>Tyngre del</td>
<td>0,083</td>
<td>0,693</td>
<td>0,123</td>
<td>0,036</td>
<td>4,109</td>
<td>0</td>
<td>0,136</td>
<td>0,067</td>
<td>0,118</td>
<td>0</td>
<td>70,54</td>
<td>76,805</td>
<td></td>
</tr>
</tbody>
</table>

Lödöse														
ME2_1	Fe-dom del	0,008	99,316	0,232	0,137	3,619	0,021	0,203	0,066	0	0,051	0,076	103,729	
ME2_2	Fe-dom del	0,011	97,645	0,264	0,032	4,526	0	0,112	0,054	0	0	0,282	102,926	
ME2_3	Cu-dom del	0,142	4,119	0,007	0,213	87,172	0	0,172	9,799	0	0,065	0	101,689	
ME2_4	Homogen	0,183	2,593	0,041	0,087	87,091	0	0	11,003	0,112	0	0,172	101,282	
ME2_5	Kompl.	0	97,467	0,313	0,084	4,664	0,085	0	0	0,192	0,134	0	102,939	
MC4_1	Matrix	0,005	0,854	0,05	0,107	94,73	0	0,085	0,103	4,01	0,466	0	0,126	100,536
MC4_2	Medel	0,083	26,258	0,103	0,123	68,414	0,021	0,064	0,026	6,251	0,145	0,050	0,075	101,612
Referenser

arkeologiska undersökningar. Geoarkeologiskt Laboratorium.
Uppsala.

GAL:s analysdatabas
Administrativa uppgifter

Riksantikvarieämbetets projektnummer: 11786.
Underkonsulter: ALS Scandinavia, MINOPREP, CEMPEG.
Digital dokumentation: förvaras på UV Mitt.
Foton: Lena Grandin och Mia Englund.
Figurer

Figur 2. Priorn 11, smidesskållan Fnr 2315 i tvärsnitt.

Figur 3. Priorn 11, Fnr 2315 i mikroskop. Översikt på homogen slagg som består av olivin (ljust grå) och en mellanliggande glasfas (mörkare grå).

Figur 5. Priorn 11, slaggen Fnr 2478 i tvärsnitt med tydligt urskiljbara slaggsträngar.

Figur 6. Priorn 11, Fnr 2478. Översikt från mikroskopet. Slaggsträngarna urskiljs med hjälp av tunna ljusa band av magnetit och skillnader i kornstorlek (finast närmast kontakterna).

Figur 8. St Clemens 4, Fnr 780530. En nästan hel smidesskål.

Figur 9. Schweizergränd, Fnr 78, del av en smidesskål, sedd i profil.

Figur 10. Schweizergränd, Fnr 169. Del av plankonvex smidesskål.

Figur 12. Schweizergründ, Fnr 307 i mikroskop. Översikt på homogen slagg som är relativt grovkornig och innehåller västtit (ljus), olivin och glas.

Figur 15. Abboten 1, Fnr 54. Översikt från mikroskopet på slagg som domineras av olivin (ljust grå) och en glasfas (mörkare grå). Wüstit förekommer i mindre mängd (tunna ljusa formationer).

Figur 16. Abboten 1, Fnr 54. Detalj från mikroskopet som visar att olivinkristallerna är zonerade, dvs., deras yttersta kant (mörkare grå; se pil) har en avvikande sammansättning.

Figur 18. Smedjan 7, Fnr 142 i delat tvärsnitt där de olika slaggflödena, vissa med stora hålrum, tydligt kan urskiljas.

Figur 19. Smedjan 7, Fnr 142. Detalj från mikroskopet, där kontakten mellan slaggflöden syns med hjälp av små skillnader i kornstorlek, kornform och mineralinnehåll.

Figur 21. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slagg i den övre delen som innehåller långsmala olivinlameller, en glasfas och dendritisk wüstit som är betydligt finkornigare än i den nedre halvan (se nästa figur).

Figur 22. Smedjan 7, Fnr 485 i mikroskopet. Översikt på slagg som i den nedre halvan domineras av wüstit som är tämligen grovkornig.

Figur 24. Stora Torget C5819:15, WII:12 i delat tvärsnitt som visar att slaggens är skiktvis uppbyggd.

Figur 25. Stora Torget C5819:15, WII:12. Översikt från mikroskopet som visar att slaggens består av olivin (ljusare grå) och en glasfas (mörkare) men att det finns skillnader i kornstorlek med grövre korn i den nedre delen.

Figur 27. TM 16858. Slagg från Stenkumla sn. Två mindre stycken av ursprungligen större slagg med många pålagrade slaggsträngar från en reduktionsslagg.

Figur 28. TM 16858 från Stenkumla sn. Översikt från mikroskopet som visar tre olika slaggflöden med tydliga kontakter (se även nästa figur).

Figur 31. MK, Fnr 169, fragment av smidesskålla med ett grönärgigt inslag.

Figur 32. MK, Fnr 169 i tvärsnitt som visar en mycket homogen uppbyggd slagg.
Figur 33. MK, Fnr 169 i mikroskop. Översikt på den homogena slaggen som domineras av wüstit (ljust grå) med olivin och glas i mindre mängd. Små metalldroppar (ljusa) är fåtaliga.

Figur 34. MK, Fnr 169 i mikroskop. Detail som visar slaggens metalldroppar (ljust röda) som består av koppar.

Figur 35. MK, Fnr 600, smidesskålla 1 i tvärsnitt.

Figur 36. MK, Fnr 600, smidesskålla 2 i tvärsnitt.

Figur 37. MH, Fnr 136, smidesskålla med en plan sida samt ett halvcirkelformat intryck närmast i bild. Intrycket kan vara spår efter en blåsteringång.

Figur 39. MH, Fnr 136 i mikroskop. Översikt på slaggen som domineras av järnoxider, såväl wüstit som magnetit (båda ljust grå). Magnetit förekommer som kantigare kristaller (se även nästa figur) och wüstit i rundare, mjukare former.

Figur 40. MH, Fnr 136 i mikroskop. Detail som visar förekomsten av magnetit som kantiga ljust grå kristaller, omgivna av en grå glasfas.

Figur 41. MG, Fnr 283a, mindre smidesskålla.

Figur 42. MG, Fnr 329, oregelbunden slagg.

Figur 43. MM, Fnr 584e, oregelbunden slagg i tvärsnitt med mestadels homogent uppbyggd slagg, men avvikande sammansättning i nedre vänstra delen.

Figur 44. ME, Fnr 2, smidesskålla 1 i tvärsnitt.

Figur 45. ME, Fnr 2 i mikroskop. Översikt på slaggens centrala delar. I hela slaggen förekommer olivin, wüstit och en glasfas. I bilden ses tydligt en skillnad mellan mer wüstit i den nedre delen och mindre i den övre.

Figur 46. ME, Fnr 2 i mikroskop. Detail ur föregående figur där den ljusa wüstiten tydligt kan urskiljas mot de ljust grå olivinkristallerna och den ännu mörkare grå glasfasen. Centralt ses en droppe av metall som innehåller såväl koppar som järn.

Figur 47. ME, Fnr 3, smidesskålla i tvärsnitt.

Figur 49. MC, Fnr 4 i mikroskop. Översikt där slaggens innehåller stor ansamling av metall. Slaggen innehåller wüstit, olivin och en glasfas. Analyser visar att metallen är en kopparlegering som innehåller både tenn och järn samt spår av antimon.
Figur 50. MC, Fnr 16, smidesskålla med avtryck mot vägg till höger i bild.

Figur 51. MC, Fnr 16, smidesskållan i tvärsnitt. Nere till höger syns en större koncentration av metalliskt järn.

Figur 52. MC, Fnr 16 i mikroskop. Översikt på slaggens övre delar. Likt många andra slagger innehåller den västt, olivin och en glasfas, men mängden olivin är relativt hög.

Figur 53. MC, Fnr 18, smidesskålla med avtryck efter förmodad blästeringång i bildens övre del.

Figur 54. MC, Fnr 18, smidesskållan i tvärsnitt.

Figur 55. MC, Fnr 18 i mikroskop. Översikt på slaggens nedre delar. Här förekommer västt, olivin och glas i något varierande proportioner.

Figur 56. MC, Fnr 19, smidesskålla 1 i tvärsnitt.

Figur 57. Jämförelse av slaggernas innehåll av mangan (som MnO) och magnesium (som MgO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och redaktionsslaggen TM16858 (fylld cirkel).

Figur 58. Jämförelse av slaggernas innehåll av fosfor (som P$_2$O$_5$) och kalcium (som CaO). I figuren visas även tidigare analyserade slagger från Visby (se text för referenser) och redaktionsslaggen TM16858 (fylld cirkel). Slagg 507 från Kaplanen 8 är ej med i diagrammet.

Figur 60. Jämförelse av slaggernas innehåll av fosfor (som P$_2$O$_5$) och kalcium (som CaO). Data från figur 58 samt referensdata för smidesslagger (se text för referenser). Axlarna är något beskurna för att tydligt illustrera de aktuella slaggerna.

Figur 61. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för smidesslagger (se text för referenser). Kromhalten är lägre i slaggerna från Lödöse än i slaggerna från Visby, för samma vanadinhalt.

Figur 63. Jämförelse av slaggernas innehåll av fosfor (som P$_2$O$_5$) och kalcium (som CaO). Data från figur 58 samt referensdata för malmer (se text för referenser).
Bergmalmer varierar generellt i kalciumsammansättning, längs x-axeln, medan de limonitiska malmerna varierar i fosforinnehåll längs y-axeln. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring. Axlarna har utökats för att täcka en större mängd referensdata.

Figur 64. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från denna undersökning samt referensdata för limonitiska malmer i södra Sverige (se text för referenser), varav några med betydligt högre vanadininnehåll. Endast ett fåtal bergmalmer i referensererna har uppgift om dessa ämnen; i dessa fall med låga halter. Visbys respektive Lödöses slagger är schematiskt markerade med en blå respektive röd ring som omfattar de flesta slaggerna från respektive plats. Ett fåtal plottar dock utanför respektive område.

men varierande manganinnehåll. Det förekommer dock slagger med lägt manganinnehåll även från Västergötland.

Figur 76. Detalj ur figur 72 på motsvarande sätt som i föregående figur. Jämförelse med slagger från Östergötland och Närke. En del av slaggerna från båda landskapen uppvisar
liknande variation som slaggerna från Lödöse, samtidigt som grupp från Närke avviker med betydligt högre fosforinnehåll.

Figur 78. Jämförelse av slaggernas innehåll av krom (Cr) och vanadin (V). Data från figur 61 samt referensdata för redaktionsslagger huvudsakligen från sydligaste Sverige, men även exempel från Dalarna och Gästrikland. Diagrammet visar att många slagger är koncentrerade kring halter under 100 mg/kg krom och under 400 mg/kg vanadin. Ett fåtal slagger från Östergötland har högre krominnehåll. Från Småland, Skåne och Halland finns ett antal slagger med betydligt högre vanadininnehåll. Många av dessa kommer från närliggande platser i gränstrakterna mellan landskapen. Den nu analyserade redaktionsslaggen från Gotland har också nämligen högt innehåll av vanadin. I följande diagram visas slagger från ett eller ett fåtal landskap åt gången för att lättare kunna arskilja eventuella skillnader och likheter.

Figur 85. Jämförelse av slaggernas innehåll av de sälsynta jordartsmetallerna lantan och cerium. Slaggen från Visby och Lödöse har låga eller mycket låga absoluta halter av både cerium och lantan jämfört med många av slaggerna i referensmaterialet.

Figur 86. Detalj ur föregående figur med ett urval av slaggen för jämförelse, utan de aktuella slaggerna från Visby och Lödöse. Liksom i figur 84 visar två schematiska linjer skillnader i proportioner mellan cerium och lantan. Slaggen från Småland och Östergötland finns längs båda linjerna medan slaggen från Västergötland mestadels följer linjen med flackast lutning.

Figur 87. Sällsynta jordartsmetaller (REE) normaliserade mot Chondrit-referens. Till vänster i diagrammet, som ämne nummer två, förekommer cerium (Ce; nr 58) som för några slaggen följer linjen från det första ämnet lantan (La; nr 57) och vidare längs x-axeln, för andra finns en topp (positiv anomali) och för ett fåtal en nedgång (negativ anomali). Ett karaktäristiskt drag är en nedgång centralt i diagrammet, vilket är europium (Eu; nr 63) som visar en negativ anomali för alla slaggen.

Tabellförteckning

Tabell 1. Förteckning över slaggar från Visby, från Gotlands museum samt en från Stenkumla sn på Gotland, från Tekniska museet.

Tabell 2. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggarne från Visby.

Tabell 3. Förteckning över slaggar från Lödöse, från Lödöse museum.

Tabell 4. Sammanställning av okulära observationer och undersökning i mikroskop av de analyserade slaggarne från Lödöse.

Tabell 5. Totalkemisk analys av slaggar från Lödöse. Den första delen av tabellen presenterar halter av huvudelementen i viktsprocent medan andra delen presenterar halter av spårelement i mg/kg. Analyserna är genomförda av ALS Scandinavia AB, analys nr L1119319 och L1119320. Allt järn är ursprungligt återgivet som Fe$_3$O$_4$ men även omräknat till FeO i slutet av huvudtabellen efter justering för glödförlust.