Medeltida smide i Vanda

Okulär och metallografisk undersökning av material från en smedja
Finland, Nyland kommun, Vanda stad

Annika Willim och Lena Grandin
Medeltida smide i Vanda

Okulär och metallografisk undersökning av material från en smedja
Finland, Nylands kommun, Vanda stad

Annika Willim och Lena Grandin
Figur på framsidan: Komplett smidesskålla med konvex botten från Vanda.

2010 Riksantikvarieämbetet
UV GAL Rapport 2010:2
Utskrift Uppsala, 2010
Innehåll

Sammanfattning ... 7
Abstract .. 8
Inledning .. 9
Frågeställningar och syfte ... 9
Material och metod ... 9
 Materialet ... 9
 Okulär klassificering .. 9
 Metallografisk undersökning ... 10
Kort om material från järnframställning och smide ... 11
 Järnframställning .. 11
 Smide .. 11
 Slaggtyper i korthet .. 11
Resultat .. 11
 Slagg ... 16
 Slagger i tvärsnitt ... 17
 Järn .. 18
 Resultat från de metallografiska undersökningarna .. 19
 65 19
 305 .. 20
 307 ... 22
 308 ... 23
 Bränd och smält lera ... 26
Diskussion och tolkning ... 27
 Spår efter smide ... 27
 Smideshärd och städ ... 29
 Primär- eller sekundärmide? ... 29
 En medeltida smedja i Vanda .. 30
Referenser ... 32
Administrativa uppgifter ... 33
Figurer ... 34
Tabelförteckning ... 35
Sammanfattning

Geoarkeologiskt Laboratorium (GAL) har på uppdrag av Vanda Stadsmuseum utfört analyser av arkeometallurgiskt material från platsen. Samtliga slagger är sekundärsmidesslagger. Flera av dem består av hela eller delar av smidesskållor med konvex botten. Vanligt förekommande är också insmält material som tolkats som fastsmälta rester av lerfodring från exempelvis en lerklädd smidesgrop i smedjan.

Abstract

During an archaeological excavation of area 3 in Gubbacka, Vanda, Finland remains from a construction interpreted as a smithy was found. In and nearby the construction slags, burnt and melted clay and iron were found. The construction consists of a burned wooden frame with a hearth underneath. The construction is situated nearby a Medieval village and road and has been dated to the 12th to 13th century.

Geoarchaeological Laboratory (GAL) has on commission by Vanda Museum carried out analysis on archeometallurgical material. The slags are slags from secondary smithing. Several of them are whole or parts of smithing slag cakes with convex bottom. Common are also melted material interpreted as melted parts of clay lining from for example a smithing pit with clay lining in a smithy.

Among the mainly corroded iron there were a few finds with preserved metal. Among these is a probable iron bar of wrought iron and mild steel, a flat iron fragment of steel, rod shaped artifacts and nails made of a soft iron. All the artifacts have a small amount of slag and are well forged.
Inledning

På uppdrag av Andreas Koivisto, Vanda Stadsmuseum har Geoarkteologiskt Laboratorium (GAL) utfört analyser av arkeometallurgiskt material från utgrävningar i Gubbacka, Västersundom i Vanda, Finland.

Frågeställningar och syfte

Arkeometallurgiska undersökningar avser allmänt att belysa och analysera problemställningar som rör ugnstyper, framställningsteknik, processkunskap, behov av upparbetning, smeders skicklighet, metallhanterkets produktionsinriktning, verksamhetens omfattning och organisation med mera.

Undersökningens huvudsakliga syfte är att ge besked om vilken typ av smide som förekommit på platsen. Detta innebär att karaktärisera produktionen samt om möjligt avgöra vilken typ av kvaliteter av järn som smederna har använt sig av. Detta i sin tur hjälper oss även att avgöra smedernas skicklighet.

Material och metod

Materialet

Materialet från Vanda består av slagger, järn och bränd och smått lera. Materialet utgör den totala mängden arkeometallurgiskt fyndmaterial som framkom vid undersökningstillfället.

Till materialet kan även de anläggningar som kopplas samman med metallhanterverket på platsen räknas. Uppdragsgivaren har tillhandahållit anläggningsbeskrivningar och bilder för de aktuella anläggningarna samt översikter över undersökningsområdet.

Okulär klassificering

Okulär klassificering av slagg bygger på några enkla men grundläggande metoder. Första steget innebär identifikation av det arkeometallurgiska materialet samt indelning i olika materialkategorier, som t ex malm, ugnsträskare, järn och slagg. Nästa steg, klassificeringen, syftar till att särskilja olika konstruktionselement i anläggningarna (t ex blästugnar, smideshärder o d) och slaggtyper från olika processer. Man brukar skilja på fyra processer som ger slagg:
Reduktion
Omsmältning
Primärsmide
Sekundärsmide

Processerna ger upphov till en lång rad slaggtyper, dels inom ramen för en och samma blåsning, dels mellan olika blåsningar och också mellan olika framställningssätt. Vissa slaggtyper uppkommer vid bearbetning av järnet. Klassificeringen går således ut på att identifiera slagg som man genom analogislut kan hänföra till en process eller till ett arbetsmoment. För att nå ett ställningstagande studeras slaggen med avseende på:

- Storlek
- Form
- Färg
- Porstørlek och porantal
- Grad av flutenhet
- Vikt
- Densitet
- Magnetism
- Ved- och/eller träkolsavtryck

Metallografisk undersökning

Undersökningen genomfördes i ett Zeiss Axioskop 40A polarisationsmikroskop utrustat med en digitalkamera.
Kort om material från järnframställning och smide

Järnframställning

Reduktionsslagger bildas vid reducering av malm till metall. Reduktionsslagger, dvs. slagger som uppstår vid t.ex. framställning av järn har en tämligen homogen sammansättning och visar flytstrukturer t.ex. som rinnande stearin. Ugnar med anordning för slaggtappning kan ge lättflutna tappslagger. Många ugnar har infördats med lera vilken är bränd, delvis smält och har vanliga inblandning av reduktionsslagg.

Smide

Smidesprocessen kan underdelas i primärsmed (omsmältning och/eller rensning av smältan från slagger) och sekundärsmed (tillverkning av föremål). Karaktäristiskt för plankonvexa primärsmedsskållor är att de är homogena i sammansättning. Karaktäristiskt för sekundärsmedsskållor är att de är heterogent skiktade, har innehåll av sand/grus och kol, samt att de oftast känns lättare än reduktionsslaggerna. Slagger från sekundärsmedet är genom inblandning av vällsand oftast mycket kiselrika i sina sammansättningar samt glasiga.

Slaggtyper i korthet

Reduktionsslagg: Slagg som bildas i samband med smältning av malm i ugn.
Primärsmedesslagg: Slagg som i järnsmidet bildas under den inledande konsoliderings- och rensningsfasen.
Sekundärsmedesslagg: Slagg som i järnsmidet bildas under uträckningsfasen och under föremålssmedet. Till dessa slagger hör även glödskal och sprutslagger.

Resultat

<table>
<thead>
<tr>
<th>Nr</th>
<th>Konstr.</th>
<th>Material</th>
<th>Sakord</th>
<th>Vikt (g)</th>
<th>Antal</th>
<th>Avtryck</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>289</td>
<td>KU356</td>
<td>Slagg</td>
<td>Smideslagg</td>
<td>75,9</td>
<td>1</td>
<td>Saknas</td>
<td>Del av smideskålla med plan delvis glasig oansida, svagt konvex botten. I tvärsnitt: Homogen, tät slagg. Överst finns ett tunt lager av kiselrikt material, möjligen del av infodring, eller mindre sannolikt från välsand.</td>
</tr>
<tr>
<td>290</td>
<td>KU357</td>
<td>Slagg och lera</td>
<td>Smideslagg och lerinfodring</td>
<td>106,5</td>
<td>11</td>
<td>Saknas</td>
<td>3 oregelbundna, svagt magnetiska smideslagger. 8 bitar infodring med skikt med slagg och smält lera, finkornigt material vidhäftat.</td>
</tr>
<tr>
<td>291</td>
<td>KU357</td>
<td>Slagg och lera</td>
<td>Smideslagg och lerinfodring</td>
<td>1753</td>
<td>43</td>
<td>Kol</td>
<td>13 smideslagger, skållor och delar av skållor. Den största ca 1 dm i diameter, Svagt magnetiska med insmält material och glasiga ytor. I tvärsnitt: 2 slagger delades; 1) Oregelbunden, något fluten. Homogen, porös slagg. 2) Oregelbundet slagsstycke som innehåller homogen slagg och smält infodring. 30 bitar infodring kraftigt smält och skiktade bitar med smält lera, slagg och rödbränt lera.</td>
</tr>
<tr>
<td>292</td>
<td>KU364</td>
<td>Slagg och lera</td>
<td>Smideslagg och lerinfodring</td>
<td>75</td>
<td>4</td>
<td>Kol</td>
<td>Smideslagg med fastsmält infodring, delvis magnetiskt med kol vidhäftat. En bit med passform.</td>
</tr>
<tr>
<td>293</td>
<td>KU364</td>
<td>Slagg och lera</td>
<td>Smideslagg och lerinfodring</td>
<td>874,2</td>
<td>28</td>
<td>Kol</td>
<td>13 smideslagger, delar av skållor med plan oansida och konvex botten, kol vidhäftat och insmält material. I tvärsnitt: 2 slager delades; 1) Tunn smideskålla. Nedre halvan utgörs av homogen, tät slagg. Övre delen innehåller smält kiselrikt material (infodring) 2) Oregelbunden, tjockare slagg, troligen del av smideskålla. Homogen, porös slagg. 15 bitar infodring, kraftigt smält och skiktade bitar med smält lera, slagg och rödbränt lera.</td>
</tr>
<tr>
<td>Nr</td>
<td>Konstr.</td>
<td>Material</td>
<td>Sakord</td>
<td>Vikt (g)</td>
<td>Antal</td>
<td>Avtryck</td>
<td>Kommentar</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>---------------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>294</td>
<td>KU364</td>
<td>Slagg och lera</td>
<td>Smidesslagg och lerinfodring</td>
<td>636,5</td>
<td>30</td>
<td>Saknas</td>
<td>14 smidesslagger, delar av mindre skällor, svagt magnetiska med insmält material. 16 bitar infodring, smalt med insmält sten.</td>
</tr>
<tr>
<td>295</td>
<td>KU364</td>
<td>Slagg och lera</td>
<td>Smidesslagg och fodring</td>
<td>672,2</td>
<td>16</td>
<td>Kol</td>
<td>7 smidesslagger, delar av skällor, magnetiska med vidhäftat kol samt glasiga parter. I tvärsnitt: 1) Liten oregelbunden slagg. Homogen och tät. 2) Del av skälla. Nedre delen är homogen tät och porös slagg. Överst finns delvis smalt kiselrikt material. 9 bitar, smalt infodring</td>
</tr>
<tr>
<td>296</td>
<td>KU364</td>
<td>Slagg och lera</td>
<td>Smidesslagg och lerinfodring</td>
<td>906,7</td>
<td>48</td>
<td>Kol</td>
<td>19 fragment samt kompletta smidesskällor, dessa har plan ovanlısida och konvex botten. Svagt magnetiska med insmält material och glasiga parter. I tvärsnitt: Smidesskälla, i det närmaste hel. Mycket homogen slagg, tät. 29 bitar smalt infodring, skikt med slagg samt glasiga ytor.</td>
</tr>
<tr>
<td>297</td>
<td>KU364</td>
<td>Slagg, sten och lera</td>
<td>Smidesslagg, sten och lerinfodring</td>
<td>701,2</td>
<td>66</td>
<td>Kol</td>
<td>41 smidesslagger, svagt magnetiska med insmält material, även sten. 2 mindre stenar med fastsmalt slagg och smalt lera. 23 bitar infodring, småta och glasiga ytor.</td>
</tr>
<tr>
<td>298</td>
<td>KU364</td>
<td>Slagg och lera</td>
<td>Smidesslagg och lerinfodring</td>
<td>318,7</td>
<td>6</td>
<td>Saknas</td>
<td>3 bitar smidesslaggar, delar av skällor, svagt magnetiska med insmält material och glasiga ytor. I tvärsnitt: 1) Del av skälla, relativt tjock. Slaggen är homogen i sammansättning men något skiktad på grund av varierande porositet. 2) Del av skälla, relativt tjock. Största delen utgörs av homogen tät slagg som överlagras av ett knapp 1 cm tjockt lager av kiselrikt material. Detta överlagras i sin tur av ett knapp 0,5 cm tjockt lager av homogen slagg med något högre total järnhalt än den dominerande slaggen. 3 bitar smalt infodring.</td>
</tr>
<tr>
<td>303</td>
<td>R373</td>
<td>Slagg</td>
<td>Smidesslagg</td>
<td>80,9</td>
<td>1</td>
<td>Saknas</td>
<td>Del av skälla, kraftigt magnetisk med insmält lera.</td>
</tr>
<tr>
<td>304</td>
<td>R373</td>
<td>Lera</td>
<td>Lerinfodring</td>
<td>10,5</td>
<td>2</td>
<td>Saknas</td>
<td>Till största del smalt infodring med partier med insmält material.</td>
</tr>
<tr>
<td>Nr</td>
<td>Konstr.</td>
<td>Material</td>
<td>Sakord</td>
<td>Vikt (g)</td>
<td>Antal</td>
<td>Avtryck</td>
<td>Kommentar</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>305</td>
<td>R373</td>
<td>Järn och lera</td>
<td>Infodring och ämne/föremål</td>
<td>237,5</td>
<td>15</td>
<td>Saknas</td>
<td>3 spik/nit med korroderade ytor, 10 bitar korroderat järn med kol vidhäftat. I tvärsnitt: I fyndet ingår flera rostiga järnklumpar där de flesta är svagt magnetiska och inte innehåller något bevarat metalliskt järn. Det största stycket, ca 60 mm långt och 30 mm som bredast innehåller dock tillsammans mycket metalliskt järn. Det provtagna tvärsnittet är rektangulärt, ca 22 mm brett och 10 mm och stora delar utgörs av järn. Provett är valt för metallografisk analys.</td>
</tr>
<tr>
<td>306</td>
<td>R373</td>
<td>Järn</td>
<td>Ämnen/föremål</td>
<td>11,6</td>
<td>1</td>
<td>Saknas</td>
<td>Del av ämne/föremål. Korroderad, magnetisk yta med rester av kol, bearbetad rektangulär form.</td>
</tr>
<tr>
<td>307</td>
<td>R373</td>
<td>Slagg, järn och lera</td>
<td>Smidesslagg, järn och lerinfodring</td>
<td>179,2</td>
<td>14</td>
<td>Kol</td>
<td>1 smidesslagg, omagnetisk. 10 bitar korroderat järn med kol vidhäftat, kraftigt magnetiska. I tvärsnitt: En långsmal rostig, magnetisk klump, med något kraftigare magnetism än flera av de andra. Ett tvärsnitt avslöjar en ursprunglig(vandrat) form med sidan 9–10 mm, där endast kärnan på ca 4–5 mm utgörs av metalliskt järn. Provett är valt för metallografisk analys.</td>
</tr>
<tr>
<td>308</td>
<td>R373</td>
<td>Slagg, järn och lera</td>
<td>Smidesslagg, järn och lerinfodring</td>
<td>1523,3</td>
<td>62</td>
<td>Kol</td>
<td>20 bitar smidesslagg med magnetiska partier, korroderade samt smått/glasiga partier och inmält sten. I tvärsnitt: Oregelbundet glasigt stycke som innehåller mestadels kiselrikt material som troligen är del av infodringen, som är hopsmält med tät och homogen slagg. 30 bitar infodring skiktade med rester av slagg som bitvis är magnetisk samt smått och glasiga ytor. 4 bitar järn med korroderade magnetiska ytor och vidhäftat finkornigt material samt kol. I tvärsnitt. Fyndposten innehåller flera oregelbundna helt korroderade klumpar. I en finns dock fläckvis områden av metalliskt järn bevarat. Dessa är endast...</td>
</tr>
</tbody>
</table>
Några millimeter stora. De är dock koncentrerade i en ytterform som eventuellt ursprungligen var triangulärt med basen ca 7 mm och höjden ca 15 mm. Om detta snitt är ett tvärsnitt, längdsnitt eller i någon annan riktning är dock osäkert.

Provet är valt för metallografisk analys.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Konstr.</th>
<th>Material</th>
<th>Sakord</th>
<th>Vikt (g)</th>
<th>Antal</th>
<th>Avtryck</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>309</td>
<td>R373</td>
<td>Slagg, järn</td>
<td>Smidesslagg, järn och lerinfodring</td>
<td>81,3</td>
<td>6</td>
<td>Kol</td>
<td>3 smidesslagger, oregelbunda med smälta och glasiga ytor. 2 bitar järn, med korroderade, magnetiska ytor, kolavtryck. 1 bit rödbrand lera med skikt av smält lera.</td>
</tr>
<tr>
<td>310</td>
<td>KU380</td>
<td>Slagg och lera</td>
<td>Smidesslagg och lerinfodring</td>
<td>116,3</td>
<td>8</td>
<td>"spår"</td>
<td>4 bitar slagg med stor del smält material. I tvärsnitt: 2 slagger delades; 1) Liten oregelbunden slagg, homogen och tät. 2) Liten oregelbunden slagg, homogen och porös. 4 bitar infodring glasiga partier och magnetiska ytor.</td>
</tr>
<tr>
<td>311</td>
<td>KU383</td>
<td>Slagg och järn</td>
<td>Smidesslagg och ämn/föremål</td>
<td>8,8</td>
<td>2</td>
<td>Saknas</td>
<td>En oregelbunden bit med insmält material och ett platt, magnetiskt järnfragment.</td>
</tr>
</tbody>
</table>
Slagg

Fig. 1. Fynd nr 295. Delar av täta smidesskållor. Foto: GAL.

Fig. 2. Fynd nr 293. En mindre smidesskål med konvex botten och inslag av insmält material. Foto: GAL.
Fig. 3. Fynd nr 298. Slagg i tvärsnitt med insmält material på övertan. Foto: GAL.

Fig. 4. Fynd nr 289. Slagg i tvärsnitt med tät struktur. Foto: GAL.

Slagar i tvärsnitt

De delade slaggerna förefaller ha en likartad sammansättning. De är huvudsakligen homogena i sammansättning med en viss skillnad i porositet, några är tätare, medan andra är något porösare. Ingen av slaggerna innehåller metalliskt järn och inneslutna kolstycken finns endast i något enstaka fall. Det är vanligt att smidesskällor har ett bottenskikt av sand, eller annat material, från smideshärdens botten och att detta har smått fast mot slaggens yta. I de delade slaggerna finns dock inga tecken på detta. Däremot förekommer sandigt, grusigt eller stenigt material insmält på övertan eller i enstaka fall även mer centralt i slaggen. Detta förekommer exempelvis i slagg nr298 (se fig. 3).
Materialet är till stor del tämligen grovt och är sannolikt delar av smideshärden införring eller i vissa fall möjlichen mindre stenar som funnits tillsammans med kolet som använts i processen. Vi kan också utesluta att materialet är sand från vällning av järnet eftersom det är för varierande i kornstorlek. Vällsand bör vara av en finare kvalitet.

Järn

Bland slagarna påträffades även järn dels i form av föremål, men mestadels obestämbbara klumpar. Vid den okulära granskningen sorterades dessa ut och beskrevs separat inom varje fyndpost i tabellen för slagarna. Ett par av dessa järnbitar studerades även de i tvärsnitt. (se tabell 2).
Resultat från de metallografiska undersökningarna

65
Okulär granskninng
En oregelbunden järnplatta, med två sidor som möts i rät vinkel med något rundat hörn. Ett tvärsnitt längs en kant uppvisar en ca 3 mm tjock kärna av metalliskt järn omgivet av rost.

Fig. 6. Fynd 65 i tvärsnitt med en smal kärna av metalliskt järn omgivet av korrosionsskikt. Foto: GAL.

Fig. 7. Foto från mikroskopet på en del av det etsade järnprovet, F65. I centrum, från vänster till höger, löper ett centralt band av stål med högre kolhalt (mörkare). Det omges på båda sidor av kolfattigare järn (ljusare). Längs båda kontakterna finns ansamling av slagginneslutningar (grå). Längs den undre syns också en välfog (ljust band). Foto: GAL.
Metallografisk undersökning
I mikroskopet framträder ett järn med flera parallella koncentrationer av slagginneslutningar. Dessa är långsträckta längs med snittets längsta sida. En del är större och mer oregelbundna i formen, andra betydligt mindre och kraftigt utsmidda. I en koncentration längs ena ytterkanten domineras inneslutningarna av wüstit. I några andra, bland annat centralt och längs motstående ytterkant innehåller de endast en glASFAS.

Vid etsning framträder en tydligt bandad struktur. Föremålet är uppbyggt av minst tre olika band. Centralt finns ett band av stål med högre kolhalt (perlit med ferrit i kornkontakterna) som omges på båda sidor av stål med lägre kolhalt (ferrit dominerar över perlit), eller i det närmast kolfrist ferritiskt järn (med lite cementit i kornkontakterna). Kontaktområden mellan de olika materialen är i flera fall svårt att exakt definiera men ställvis finns en tynn ljus zon mellan de båda. Sådana zoner markerar s.k. välfogor. Dessutom följer flera stråk av slagginneslutningar längs med kontakten. Enstaka stråk av slagginneslutningar mott i det centrala bandet av stål antyder att även detta är sammanvält av flera band, eller vikvält, d.v.s. hopvikt flera gånger.

Kommentar
Föremålet är tillverkat stål med en högre kolhalt och därmed hårdare material i de centrala delarna samt mjukare, kolfattigare järn i yttre delarna. De allra yttersta kanterna är dock uppströmda och materialsammansättningen därmed okänd. De båda materialkvaliteterna är sammanvällda från, minst, två olika ursprungsstycken.

305
Okulär granskning
I fyndet ingår flera rostiga järnklumpar där de flesta är svagt magnetiska och innehåller inte något bevarat metalliskt järn. Det största stycket, ca 60 mm långt och 30 mm som bredast innehåller dock tämligen mycket metalliskt järn. Det provtagna tvärsnittet är rektangulärt, ca 22 mm brett och 10 mm och stora delar utgörs av järn.

Fig 8. Fynd 305 i tvärsnitt med en rektangulär kärna av metalliskt järn. Foto: GAL.
Metallografisk undersökning

Stora delar av snittet består av metalliskt järn. Flera oregelbundna ytor utgörs av korroderad metall. En mindre mängd ytor innehåller slagg. Dessa är oregelbundna i formen. En del slagg finns också koncentrerat i den yttre delen av stycket som utgörs av helt korroderad metall. Slagen består av oregelbundet formade ansamlingar som domineras av wüstit.

Järnet varierar något i sammansättning från i det närmaste helt ferritiskt i de yttre delarna med successivt ökande perlitmängd inåt i provet till som mest ungefär lika mängder perlit och ferrit. Kolhalten är som mest några tiondels viktsprocent i de inre delarna och i det närmast noll i ytterkanten. Inga vällsömmar syns i provet.

Kommentar

![Fig. 9. F305, foto från mikroskopet på oetsat prov. I metallen (ljus) i övre delen finns grå ytor som är rost. I nedre delen syns den omgivande i rosten. I denna finns ljusa ytor som är tämligen stora slagginnleslutningar. Foto: GAL.](image-url)
Fig. 10. F305, foto på etsat prov. Järnet sammansättning varierar från kolfattigt (ljusa områden i nedre vänstra hörnet) till kolrikare stål (mörkare ytor i övre högra delen). Foto: GAL.

307

Okulär granskning

En långsmal rostig, magnetisk klump, med något kraftigare magnetism än flera av de andra. Ett tvärsnitt avslöjar en ursprungligen kvadratisk form med sidan 9–10 mm, där endast kärnan på ca 4–5 mm utgörs av metalliskt järn.

Fig. 11. Fynd 307 i tvärsnitt en kvadratisk form med en kärna av metalliskt järn. Foto: GAL.
Metallografisk undersökning

Kärnan av metalliskt järn innehåller mestadels endast få och små slagginneslutningar. Ett fåtal större förekommer dock i det som nu är yttre delarna av metallen. Här finns en ansamling av några större, upp till 600 mikrometer stora, oregelbundna inneslutningar som domineras av wüstit men också innehåller en glasfas och möjligvis även olivin.

I tvärsnittet dominerar jämnkornigt ferritiskt järn. En mindre yta, anslutning till de större slagginneslutningarna har en mindre kornstorlek och även lite perlit i kornkontakerna, dvs. en något förhöjd kolhalt. Det är dock svårt att avgöra om det är två olika stycken som vällts samman eller de kommer från ursprungligen samma stycke.

Kommentar

Några större slagginneslutningar har blivit kvar i järnet från tillverkning och troligen haft en liten negativ effekt på föremålet. Det uppsvisar dock inga tecken på sprickbildning kring dem varför det trots detta kan ha fungerat tillräckligt bra för ändamålet med det mestadels homogena och mjuka järnet.

![Fig. 12. Foto på etsat prov, F307. Ett ferritiskt jämnkornigt järn dominerar i provet (ljusa fält). Områden med högre kolhalt finns lokalt i nedre vänstra delen. I övre vänstra hörnet finns några enstaka större slagginneslutningar (grå). Foto: GAL.](image-url)

308

Okulär granskning

Fyndposten innehåller flera oregelbundna helt korroderade klumpar. I en finns dock fläckvis områden av metalliskt järn bevarat. Dessa är endast några millimeter stora. De är dock koncentrerade i en ytterform som eventuellt ursprungligen var triangulärt med basen ca 7 mm och höjden ca 15 mm. Om detta snitt är ett tvärsnitt, längdsnitt eller i någon annan riktning är dock osäkert.
Fig. 13. Fynd 308 i tvärnitt syns punkter av metalliskt järn omgivet av korrosionsskikt. Foto: GAL.

Metallografisk undersökning
De två små ytorna av bevarat metalliskt järn är tämligen slaggfria. Endast mindre slagginneslutningar med glasigt innehåll förekommer sporadiskt i den ena av dem.

Vid etsning framträder en mycket homogen struktur. De små intakta ytorna består genomgående av jämnkornigt ferritiskt järn. Lokalt förekommer små mängder av cementit längs kornkontakterna men den totala kolhalten är ändå mycket låg.

Kommentar
De små bevarade ytorna av metall avslöjar ett föremål som är uppbyggt av ett homogent mjukt järn med endast mycket liten mängd slagg. Den totala kvalitén förefaller ha varit bra.

Fig. 14. Foto från mikroskopet på etsat prov, F308. Detalj på jämnkornig ferrit med lite cementit i kornkontakterna. Foto: GAL.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Konstr.</th>
<th>Material</th>
<th>Sakord</th>
<th>Vikt (g)</th>
<th>Antal</th>
<th>Avtryck</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>KU359</td>
<td>Järn</td>
<td>Delar av ämnen el föremål.</td>
<td>1,2</td>
<td>1</td>
<td>Saknas</td>
<td>Platt, något oregelbunden, korroderad bit. Kraftigt magnetisk.</td>
</tr>
<tr>
<td>65</td>
<td>R373</td>
<td>Järn</td>
<td>Spik samt delar av ämnen el föremål</td>
<td>76,4</td>
<td>5</td>
<td>Saknas</td>
<td>1 spik samt 4 korroderade fragment. Kraftigt magnetiska. I tvärsnitt: En oregelbunden järnplatta, med två sidor möts i rätt vinkel med något rundat hörn. Ett tvärsnitt längs en kant uppvisar en ca 3 mm tjock kärna av metalliskt järn omgivet av rost. Provet är valt för metallografisk analys.</td>
</tr>
<tr>
<td>66</td>
<td>R373</td>
<td>Järn</td>
<td>Delar av ämnen el föremål.</td>
<td>13,4</td>
<td>2</td>
<td>Saknas</td>
<td>Platta, rektangulära med korroderade ytor. Kraftigt magnetiska.</td>
</tr>
<tr>
<td>67</td>
<td>R373</td>
<td>Järn</td>
<td>Delar av ämnen el föremål.</td>
<td>6,7</td>
<td>2</td>
<td>Saknas</td>
<td>Platta, rektangulära med korroderade ytor. Kraftigt magnetiska.</td>
</tr>
<tr>
<td>68</td>
<td>R373</td>
<td>Järn</td>
<td>Nitbricka samt delar av ämnen el föremål.</td>
<td>20,2</td>
<td>8</td>
<td>Saknas</td>
<td>1 nitbricka samt 7 korroderade fragment. Kraftigt magnetiska</td>
</tr>
<tr>
<td>69</td>
<td>R373</td>
<td>Järn</td>
<td>Spik, rödbränt lera samt delar av ämnen el föremål.</td>
<td>25,8</td>
<td>12</td>
<td>Saknas</td>
<td>2 spik, 1 bit rödbränt lera samt 10 bitar platta och oregelbundna korroderade fragment. Kraftigt magnetiska.</td>
</tr>
<tr>
<td>70</td>
<td>R373</td>
<td>Järn</td>
<td>Spik samt delar av ämnen el föremål.</td>
<td>37,7</td>
<td>13</td>
<td>Saknas</td>
<td>2 spik och 11 bitar oregelbunda el plana bitar. Kraftigt magnetiska.</td>
</tr>
<tr>
<td>71</td>
<td>R373</td>
<td>Järn</td>
<td>Nit och delar av ämnen el föremål.</td>
<td>11,4</td>
<td>3</td>
<td>Saknas</td>
<td>1 nit och 2 oregelbunda, korroderade bitar. Kraftigt magnetiska.</td>
</tr>
<tr>
<td>72</td>
<td>R373</td>
<td>Järn</td>
<td>Delar av ämnen el föremål.</td>
<td>2,4</td>
<td>1</td>
<td>Saknas</td>
<td>Platt, tunt och rektangulärt järnfragment med korroderad yta. Kraftigt magnetiskt. I tvärsnitt: korroderat.</td>
</tr>
<tr>
<td>73</td>
<td>R373</td>
<td>Järn</td>
<td>Spik och delar av ämnen el föremål.</td>
<td>12,3</td>
<td>7</td>
<td>Saknas</td>
<td>5 spik och 2 platta/rektangulära, korroderade bitar. Kraftigt magnetiska.</td>
</tr>
</tbody>
</table>
Bränd och smält lera

Gemensamt för lermaterialet är att stora delar av det blivit utsatt för höga temperaturer vilket kan förknippas med metallhanter. Leran kan delas in i lera som är kraftigt värmeuppkastat, d.v.s. helt eller delvis smått samt lera som både smått och bränts, ofta skiktvis. De småla lerstycken dominerar materialet och är vanligen oregelbundna med rundade former och glasiga och blåsiga ytor. Ett par bitar har även skikt med både grå- och rödbränt lera, vilket tyder på varierande oxidationsförhållanden. I materialet förekommer också bitar som har ursprungliga yttre former och avtryck. Detta kan hängöra från exempelvis en lerklädd botten i en smideshård där leran formats efter botten och väggarnas utseende. Inga delar eller fragment av deglar eller gjutformar har noterats.

Tabell 3. Tabell över den okulärt granskade brända leran.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Konstr.</th>
<th>Material</th>
<th>Sakord</th>
<th>Vikt (g)</th>
<th>Antal</th>
<th>Avtryck</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>326</td>
<td>KU357</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>43,6</td>
<td>11</td>
<td>Kol</td>
<td>Skiktvis rödbränta och smälta bitar med rester av kol.</td>
</tr>
<tr>
<td>327</td>
<td>KU357</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>229,5</td>
<td>32</td>
<td>Saknas</td>
<td>Rödbränta delvis smälta, bitar, något magrade. Enstaka kontaktytor.</td>
</tr>
<tr>
<td>332</td>
<td>KU364</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>32,7</td>
<td>8</td>
<td>Kol</td>
<td>Skiktvis rödbränta och smälta bitar med rester av kol.</td>
</tr>
<tr>
<td>333</td>
<td>KU364</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>13,9</td>
<td>3</td>
<td>Saknas</td>
<td>Rödbränta och skiktvis smälta bitar med blåsiga och glasiga ytor. 2 bitar med passform.</td>
</tr>
<tr>
<td>334</td>
<td>KU364</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>27,2</td>
<td>4</td>
<td>Saknas</td>
<td>Rödbränta, platta bitar.</td>
</tr>
<tr>
<td>339</td>
<td>R373</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>20,3</td>
<td>4</td>
<td>Strå</td>
<td>Rödbränta bitar.</td>
</tr>
<tr>
<td>340</td>
<td>KU364</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg och järn</td>
<td>44,3</td>
<td>7</td>
<td>Kol</td>
<td>En bit rektangulärt järn. Magnetiskt med kolavtryck samt större kolbitar vidhäftat. 3 bitar röd- och gråbränd lera med skikt av smält lera och glasiga ytor. 1 bit sammankittat finkornigt material med kol vidhäftat.</td>
</tr>
<tr>
<td>341</td>
<td>KU364</td>
<td>Bränd och smält lera</td>
<td>Infodring/ugnsvägg</td>
<td>15,1</td>
<td>2</td>
<td>Linje/spår</td>
<td>Skiktvis grå- och rödbränt lera.</td>
</tr>
</tbody>
</table>
Fig 15. Ett exempel på lera som utsatts för kraftig värmepåverkan och smält. Fynd nr291.

Diskussion och tolkning

Spår efter smide

I det undersökta materialet från Vanda är smidet av järn tydligt. Vi ser det huvudsakligen i form av smideskållor och delar av sådana. Utöver detta påträffades även järn i form av föremål såsom spik och nit, men även en del korroderade, magnetiska järnklumpar. Dessa bedömdes utifrån den okulära granskningen vara järn, antingen delar av föremål eller ämnen, eller smidesavfall i någon form. Vid studier av tvärsnitt på flera av dessa visade det sig att de flesta inte innehöll något metalliskt järn utan enbart korrosionsskikt.

Anmärkningsvärt är att inga fynd av eller glödskal eller sprutslagger påträffades. Glödskal är mycket karaktäristiska för smidet och framförallt senare led i smidet när föremålen börjar ta form. Glödskalen bildas på ytan av järnet som smids när detta tas ur värmen i smideshärden ut i luften då metallen reagerar med syre och bildar en tunn järnoksidhinnna. Vid bearbetning på stället slås sedan dessa tunna skal bort från föremålet och hamnar normalt i närheten av detta. En del kan också sitta kvar på järnet och följa med tillbaka in i härden Sprutslagger, även kallade kulslagger, är små rundade, oftast gråsvarta och huvudsakligen magnetiska slagger som bildas på liknande sätt som glödskal. Deras ursprungliga deponering inom en smidesaktivitetsytta bör därmed vara i närheten av härden (Andersson & Grandin 2007)

Fig. 16 Sprutslagger, även kallade kulslagger p.g.a. sin runda form från en undersökning av delar av det medeltida Skänninge i Östergötland. Foto: GAL.

Att sprutslaggerna och glödskalen saknas i materialet från Vanda kan ha sin förklaring i att det insamlade materialet harrör från en stratigrafskt lägre nivå, d.v.s. vi befinner oss för långt ner i smedjan/smidesområdet. Så långt ner att vi faktiskt är på en nivå under placeringen för smideshärden och städet.

Smideshärud och städ

Det arkeometallurgiska materialets koppling till de undersökta anläggningarna inom området är av vikt för att förstå hantverket på platsen. De kanske två mest tydliga anläggningstyperna från smidets olika processled är smideshärden och städet. Städ ska finnas på lagom arbetsavstånd från härden. Därmed bör de båda anläggningstyperna ha funnits i anslutning till varandra.

För att söka efter dessa båda anläggningar är glödskalen vanligen bra indikatorer för städets placering då koncentrationer av skal runt en "fyndtom" yta ofta visar att städet varit placerat i det rena området.

I härden kan vi förvänta oss en slaggskålla från det sista smidestillfället. Smidesskållorna som växer till och bildas i härden rensas ut för hand innan härden blir fyllt med slagg. Detta betyder att tidigare bildade slaggskållor har rensats ut och hamnat i något slaggvarp.

I härden kan också finnas rester efter infodring, i form av lerbiter med en bränd och en smält del. Runt härden finns också ofta en temperaturpåverkad zon, något som inte observerats i denna undersökning. Härden kan vara delvis nedgrävd eller en försänkning i en uppbyggd härdpall. Det sistnämnda är vanligt i medeltida sammanhang, men ej i förhistoriska, belägg finns dock för att den uppbyggda ässjan förekommer först under vikingatid i s.k. elitmiljöer (se Hjärthner-Holdar m.fl. 1999).

Primär- eller sekundärsmede?

Efter den okulära granskningen av materialet kan vi konstatera att slagg- och järnmaterialet kan knytas till järnsmede. Den smidesprocess som ägt rum på platsen har skett på ett mycket likartat sätt och med samma typ av utgängsmaterial. Ingen av slaggerna innehåller metalliskt järn och inneslutna kolstycken finns endast i något enstaka fall.

Men vilket processled inom smidet är det som lämnat spår? Vad som kan bedömas utifrån den okulära granskningen samt de metallografiska analyserna hänger materialet från sekundärsmedet, d.v.s. från föremålssmediet. Detta grundar sig på förekomsten av de skållformade skållorna, men även slaggens uppbyggnad.

De slagger som studerats i tvärnitt är dels porösa med inslag av insmält material, men även homogen uppbyggda vilket inte alltid är fallet med skållor från sekundärsmedet. Avsaknaden av insmält lager av sandigt material på en del av slaggerna kan tyda på att smederna inte använt sig av vällsand i smidet. Antingen har man inte använt den metod som ett har man inte välld samman t.ex. järn och stål utan endast arbetat med en järnkvalité i sänden. Sammanvältning av järn och stål, med olika småtttemperaturen, kan underlätta genom att man tillför vällsand på ytorna. Att slaggerna är homogena kan också berö på att man arbetet ihållande med något större material och bibehållit temperaturen på samma nivå hela tiden. Efter avslutat smide har härden sedan kontinuerligt tömts på slagg innan nästa smideskampanj har tagit vid. Smält material förekommer dock på en stor del av slaggarna. Vanligt är att smidesskållor har ett bottenskikt av sand, eller annat material, från smideshärden botten och att detta har smått fast mot slaggens yta. I de
delade slaggerna finns dock inga tecken på detta. Däremot förekommer sandigt, grusigt eller stenigt material insmält på överytan eller i enstaka fall även mer centralt i slaggen (fynd 298). Detta är mestadels tämligen grovt och sannolikt delar av härdenstinfodring eller möjliga stenar som funnits tillsammans med kolet. Det är dock troligen inte sand från vällning av järnet eftersom det är för varierande i kornstorlek. Inte heller i de undersökta järnproven finns tecken på användning av vällsand utan den vällning som skett mellan stål med varierande kolhalter har skett utan sådan tillsats.

\[\text{Fig. 17. Rekonstruktion av en undersökt medeltida smedja i Salmered, Västergötland gjord av GAL. De från platsen dokumenterade anläggningarna ligger som grund. Två tunnbälger har placerats på fundamenten till höger om ässjan. Två städstabbar står på golvet framför ässjan. Möjligtvis kan vi föreställa oss en liknande bild av smedjan i Vanda.}\]

En medeltida smedja i Vanda

Flera av dessa ovan nämnda inventarier går att spåra i smedjan i Vanda; ässjan med den trä och stenbyggda härdballen, den lerklädda smidesgropen, stolphålet för placeringen av städstabben.

Smedjan och smidesområdet i Vanda med sin medeltida datering (1100-1200-tal) utgör ett intressant avtryck av ett metallhantverk i ett område där tidigare forskning grundat på arkeometallurgiska analyser ej utförts.
Referenser

Administrativa uppgifter

Riksvik arykvarieämbets dnr: 424-04925-2009
Riksvik arykvarieämbets projektnummer: 11540
Projektgrupp: Annika Willim och Lena Grandin
Fotografier: Annika Willim
Figurer

Fig. 1. Fynd nr 295. Delar av täta smidesskållor. Foto: GAL.

Fig. 2. Fynd nr 293. En mindre smidesskålla med konvex botten och inslag av insmältt material. Foto: GAL.

Fig. 3. Fynd nr 298. Slagg i tvärsnitt med insmältt material på övertytan. Foto: GAL.

Fig. 4. Fynd nr 289. Slagg i tvärsnitt med tät struktur. Foto: GAL.

Fig. 5. Fynd nr 298. Slagg i tvärsnitt med porös struktur. Foto: GAL.

Fig. 6. Fynd 65 i tvärsnitt med en smal kärna av metalliskt järn omgivet av korrosionsskikt. Foto: GAL.

Fig. 7. Foto från mikroskopet på en del av det etsade järnprovet, F65. I centrum, från vänster till höger, löper ett centralt band av stål med högre kolhalt (mörkare). Det omges på båda sidor av kolfattigare järn (ljusare). Längs båda kontakterna finns ansamling av slagginneslutningar (grå). Långs den undre syns också en välfog (ljus band). Foto: GAL.

Fig. 8. Fynd 305 i tvärsnitt med en rektangulär kärna av metalliskt järn. Foto: GAL.

Fig. 9. F305, foto från mikroskopet på etsat prov. I metallen (ljus) i övre delen finns grå ytor som är rost. I nedre delen syns den omgivande i rosten. I denna finns ljusare ytor som är tämligen stora slagginneslutningar. Foto: GAL.

Fig. 10. F305, foto på etsat prov. Järnet sammansättning varierar från kolfattigt (ljusa områden i nedre vänstra hörnet) till kolrikare stål (mörkare ytor i övre högra delen). Foto: GAL.

Fig. 11. Fynd 307 i tvärsnitt en kvadratisk form med en kärna av metalliskt järn. Foto: GAL.

Fig. 12. Foto på etsat prov, F307. Ett ferritiskt jämnkornigt järn dominerar i provet (ljusa fält). Områden med högre kolhalt finns lokalt i nedre vänstra delen. I övre vänstra hörnet finns några enstaka större slagginneslutningar (grå). Foto: GAL.

Fig. 13. Fynd 308 i tvärsnitt syns punkter av metalliskt järn omgivet av korrosionsskikt. Foto: GAL.

Fig. 14. Foto från mikroskopet på etsat prov, F308. Detalj på jämnkornig ferrit med lite cementit i kornkontakterna. Foto: GAL.

Fig. 15. Ett exempel på lera som utsatts för kraftig värmepåverkan och smält. Fynd nr 291.

Fig. 16. Sprutslagger, även kallade kulslagger p.g.a. sin runda form från en undersökning av delar av det medeltida Skänninge i Östergötland. Foto: GAL.
Fig. 17. Rekonstruktion av en undersökt medeltida smedja i Salmered, Västergötland gjord av GAL. De från platsen dokumenterade anläggningarna ligger som grund. Två tunnbälgar har placerats på fundamenten till höger om ässjan. Två städstabbar står på golvet framför ässjan. Möjligtvis kan vi föreställa oss en liknande bild av smedjan i Vanda.

Tabellförteckning

Tabell 3. Tabell över den okulärt granskade brända leran.